浏览全部资源
扫码关注微信
1. 东南大学 机械工程学院,江苏 南京,211189
2. 南京工程学院,江苏 南京,211167
收稿日期:2013-05-13,
纸质出版日期:2014-01-15
移动端阅览
陈芳, 张存继, 韩延祥等. 简单图像的快速聚焦[J]. 光学精密工程, 2014,22(1): 220-227
CHEN Fang, ZHANG Cun-ji, HAN Yan-xiang etc. Fast focus on simple images[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 220-227
陈芳, 张存继, 韩延祥等. 简单图像的快速聚焦[J]. 光学精密工程, 2014,22(1): 220-227 DOI: 10.3788/OPE.20142201.0220.
CHEN Fang, ZHANG Cun-ji, HAN Yan-xiang etc. Fast focus on simple images[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 220-227 DOI: 10.3788/OPE.20142201.0220.
为了有效地实现简单图像的快速高精度自动聚焦
提出了一种新的快速聚焦算法。首先在相机进行调焦时自动获取系列零件图像
并记录各图像对应的位置;然后计算每张图像中目标边缘的灰度变化跨度值
从中找到跨度值最小的图像
即为最清晰图像;最后把其所在位置反馈给硬件驱动系统
实现自动聚焦。用新算法分别对不同形状和不同材料的零件
在添加椒盐噪声和没有添加噪声的情况下进行实验
并与计算量小的几种经典最优聚焦函数做了对比试验。结果表明
用新算法对简单图像进行聚焦比常用的最优聚焦函数更敏锐
单峰性更好
抗噪能力更强
而且速度比最快的绝对梯度函数快30%以上。因此
新算法在拍摄简单场景时
鲁棒性好
可以更好地实现快速聚焦。
To quickly realize the autofocus of a simple image and further improve the efficiency of automated part fabrication
a novel fast focusing algorithm was proposed according to the characters of images with single and clear backgrounds and foregrounds. Firstly
a series of part images including their position information were acquired. Then
all variance grey span values of target edges in each image were calculated automatically and the minimum span value of the clearest image was found quickly. Finally
the position information of the clearest image was feedbacked to a hardware driving system tocomplete the autofocus.An experiment on severalparts with different shapes or materials was performed and obtained results were compared with that of the classic optimal focus function.The experimental resultson those images added with salt-and-pepper noisesdemonstrate that the new algorithm is not only more sensitive but also has stronger unimodality and stronger anti-noise ability than those of classic optimum algorithms.Moreover
its computing speed is more than 30% faster than that of the fastest absolute gradient function. It concludes that the novel algorithm is robust and can be better used for a fast focus on simple scenes.
SHEN H, LI S X, GU D Y, et al.. Bearing defect inspection based on machine vision [J]. Measurement, 2012, 45(4): 719-733.
SHAHABI H H, RATNAM M M. Noncontact roughness measurement of turned parts using machine vision [J]. Int J Adv Manuf Technol, 2010, 46(1-4):275-284.
王小鹏, 刘志华, 陈天宁. 透明材料微小器件键合质量检测系统设计[J]. 光学 精密工程, 2013, 21(1):69-76.
WANG X P, LIU ZH H, CHEN T N. Design of bonding quality testing system for micro device made of transparent materials [J]. Opt. Precision Eng., 2013, 21(1):69-76.(in Chinese)
刘建伟, 梁晋, 梁新合, 等. 大尺寸工业视觉测量系统[J]. 光学 精密工程, 2010, 18(1):126-134.
LIU J W, LIANG J, LIANG X H, et al.. Industrial vision measuring system for large dimension work-pieces [J]. Opt. Precision Eng., 2010, 18(1): 126-134 . (in Chinese)
GADELMAWLA E S. Computer vision algorithms for measurement and inspection of spur gears [J]. Measurement, 2011, 44(9): 1669-1678.
PARK J B, LEE J G, LEE M K, et al.. A glass thickness measuring system using the machine vision method [J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(5): 769-774.
SUN Y, DUTHALER S, NELSON B J.Auto-focusing in computer microscopy:selecting the optimal focus algorithm [J].Microscopy Research and Technique, 2004, 65(3):139-149.
VU P V, CHANDLER D M. A fast wavelet-based algorithm for global and local image sharpness estimation [J]. IEEE Signal Processing Letters, 2012, 19(7): 423-426.
ZONG G H, SUN M L, BI S S, et al.. Research on wavelet based autofocus evaluation in micro-vision [J]. Chinese Journal of Aeronautics, 2006, 19 (3): 239-246.
李明明, 王新赛, 李坚. 基于图像处理的自动聚焦清晰度函数比较研究[J]. 红外与激光工程, 2010, 39(增刊):244-248.
LI M M, WANG X S, LI J. Comparative study on the auto-focus definition function based on the image processing [J]. Infrared and Laser Engineering, 2010, 39(Supp.): 244-248.(in Chinese)
LIU Y P, JIN J, WANG Q, et al.. Phases measure of image sharpness based on quaternion wavelet [J]. Pattern Recognition Letters, 2013, 34(9):1063-1070.
董代, 刘荣, 孙明磊, 等. 基于互相关的自动聚焦方法[J]. 北京航空航天大学学报, 2006, 32(3):306-310.
DONG D, LIU R, SUN M L, et al.. Auto-focusing algorithm based on cross correlation [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(3):306-310. (in Chinese)
王倩, 宋恩民, 许向阳, 等. 基于加权邻域相关性的显微镜自动聚焦函数[J]. 光学 精密工程, 2008, 16(1): 166-171.
WANG Q, SONG E M, XU X Y, et al.. Auto-focusing function for microscope image based on weighted neighborhood correlation [J]. Opt. Precision Eng., 2008, 16(1): 166-171. (in Chinese)
RUDNAYA M E, TER MORSCHE H G, MAU-
BACH J M L, et al.. A derivative-based fast autofocus method in electron microscopy [J].J Math Imaging Vis., 2012, 44(1):38-51.
张亚涛, 吉书鹏, 王强锋, 等. 基于区域对比度的图像清晰度评价算法[J]. 应用光学, 2012, 33(2): 293-299.
ZHANG Y T, JI SH P, WANG Q F, et al.. Definition evaluation algorithm based on regional contrast [J]. Journal of Applied Optics, 2012, 33(2): 293-299. (in Chinese)
张旭东, 王景峰, 程永强. 多功能一体化模拟摄像机系统设计[J]. 液晶与显示, 2009, 24(1):116-120.
ZHANG X D, WANG J F, CHENG Y Q. Design of multifunctional and integrative analog camera system [J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(1): 116-120. (in Chinese)
张博, 张刚, 程永强. 具有自动聚焦功能的视频处理器的设计[J]. 液晶与显示, 2010, 25(3): 396-400.
ZHANG B, ZHANG G, CHENG Y Q. Design of video processor with auto-focusing [J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(3): 396-400. (in Chinese)
0
浏览量
123
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构