浏览全部资源
扫码关注微信
1. 浙江大学 信息与电子工程学系,浙江 杭州,310027
2. 英国博尔顿大学 可再生能源和环境技术研究所,博尔顿 BL35AB
收稿日期:2013-09-20,
纸质出版日期:2014-02-20
移动端阅览
周剑,何兴理,金浩等. 基于ZnO压电薄膜的柔性声表面波器件[J]. 光学精密工程, 2014,22(2): 346-350
ZHOU Jian, HE Xing-li, JIN Hao etc. Flexible ZnO thin film SAW device on polyimide substrate[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 346-350
周剑,何兴理,金浩等. 基于ZnO压电薄膜的柔性声表面波器件[J]. 光学精密工程, 2014,22(2): 346-350 DOI: 10.3788/OPE.20142202.0346.
ZHOU Jian, HE Xing-li, JIN Hao etc. Flexible ZnO thin film SAW device on polyimide substrate[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 346-350 DOI: 10.3788/OPE.20142202.0346.
提出并制备了基于聚酰亚胺柔性衬底的声表面波(SAW)器件。在柔性聚酰亚胺衬底上低温反应磁控溅射沉积了ZnO压电薄膜;采用X射线衍射仪
扫描电子显微镜
原子力显微镜等设备对ZnO薄膜进行了检测
结果表明:ZnO薄膜晶粒呈柱状生长并且(002)择优取向
膜粗糙度小于9 nm
适合制作压电器件。在柔性衬底上制备了基于ZnO压电薄膜的SAW器件
该器件表现出良好的谐振性能。采用矢量网络分析仪检测器件的传输曲线
实验结果与仿真结果具有很好的一致性。随着波长减小
谐振频率和相速度增加
当ZnO厚度为4 μm
波长为8 μm时
器件的谐振频率为268 MHz
相速度为2 144m/s
机电耦合系数为1.1 %;当ZnO厚度增加时
此叠层结构的声表面器件的叠层声速也增加。
Surface Acoustic Wave (SAW) devices on flexible polyimide substrates were developed. The ZnO piezoelectric layers were deposited on a flexible polyimide substrate by low temperature reactive magnetron sputtering
then the layers were characterized by the X-ray Diffraction (XRD)
Sanning Electron Microscope(SEM)
and the Atomic Force Microscope. The results show that ZnO layers with columnar structures have (002) crystal orientation and lower layer roughness(less than 9 nm)
and they are suitable for fabrication of piezoelectric devices. The SAW device based on the ZnO piezoelectric layers were fabricated on a flexible polyimide substrate
and it could offer excellent resonance characteristics. A vector network analyzer was used detect the transmission curve
and results show that the resonance frequency and phase velocity increase with decreasing wavelength
and the experimental results are in good agreement with the simulated results. When the thickness and wavelength of the ZnO layer are 4 micron
and 8 micron
respectively
the device has its resonant frequency of 268 MHz
acoustic phase velocity of 2 144 m/s and the electromechanical coupling coefficent of 1.1 %. Moreover
the acoustic velocity in the ZnO layer also increases with the increase of the ZnO thickness.
ROGERS J A, SOMEYA T, HUANG YG. Materials and mechanics for stretchable electronics[J]. Science, 2010,327:1603-1607.
LUNGENSCHMIED C, DENNLER G, NEUGEBAUER H, et al.. Flexible, long-lived, large-area, organic solar cells[J]. Energy Mater.Cells, 2007, 91: 379-384.
GREEF A DE, LAMBERT P, DELCHAMBRE A, Towards flexible medical instruments: Review of flexible fluidic actuators[J]. Precis. Eng., 2009, 33:311-321.
KREBS F C, GEVORGYAN S A, GHOLAMKHASS B, et al.. A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules[J]. Energy Mater. Cells, 2009, 93:1968-1977.
SUN L, QIN G, HUANG H, et al..Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate [J]. Appl. Phys. Lett., 2010, 96: 013503-013509.
PARK S I, XIONG Y J, KIM R H, et al.. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays [J]. Science, 2009,325(5943):977-981.
SIRE C, ARDIACA F, LEpILLIET S, et al.. Flexible gigahertz transistors derived from solution-based single-layer graphene [J].Nano Lett., 2012, 12(3) :1184-1188.
LEMKE T, BIANCUZZI G, FETH H, et al.. Fabrication of normally-closed bidirectional micropumps in silicon–polymer technology featuring photopatternable silicone valve lips [J]. Sens. Actuator A-Phys., 2011,168 (1):213-222.
AKIYAMA M, MOROFUJI Y, KAMOHARA T, et al.. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films [J].J. Appl. Phys.,2006,100 (11):114318-114318-5.
FU Y Q, LUO J K, DU X Y, et al.. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review[J].Sens. Actuator B-Chem., 2010,143(2):606-619.
FU Y Q, GARCIA-GANCEDO L, PANG H, et al.. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices[J]. A. Biomicrofluidics, 2012,6(2):024105- 024105-11.
LUO J K, FU Y Q, ASHLEY G, et al.. Integrated ZnO film based acoustic wave microfluidics and biosensors [J].Adv. Sci. Technol., 2011,67:49-58.
IEVTUSHENKO A I, KARPYNA V A, LAZORENKO V I, et al.. High quality ZnO films deposited by radio-frequency magnetron sputtering using layer by layer growth method [J].Thin Solid Films, 2010,518(16):4529-4532.
WEI C L, CHEN Y C, CHENG C C, et al.. Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator[J].Thin Solid Films, 2010,518 (11):3059-3062.
WATER W, CHU S Y. Physical and structural properties of ZnO sputtered films[J]. Mater. Lett., 2002,55:67-72.
ASMAR R, FERBLANTIER G, MAILLY F, et al.. Effect of annealing on the electrical and optical properties of electron beam evaporated ZnO thin films[J]. Thin Solid Films,2005,473:49-53.
KALANTAR-ZADEH K, CHEN Y Y, et al.. A novel Love mode SAW sensor with ZnO layer operating in gas and liquid media [J].IEEE Ultrasonics Symposium, 2001,1:353-356.
MORGAN D P. Surface-wave Devices for Signal Processing [M]. Elsevier: New York, 1985.
0
浏览量
714
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构