浏览全部资源
扫码关注微信
1. 清华大学 精密仪器系 北京,100084
2. 中国航天员科研训练中心 北京,100094
收稿日期:2013-09-20,
纸质出版日期:2014-02-20
移动端阅览
施镠佳,董景新,谭映军等. 通道型电磁常闭微阀结构参数优化[J]. 光学精密工程, 2014,22(2): 406-413
SHI Liu-jia,DONG Jing-xin,TAN Ying-jun etc. Optimization of structure parameters of channel-type electromagnetic microvalves[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 406-413
施镠佳,董景新,谭映军等. 通道型电磁常闭微阀结构参数优化[J]. 光学精密工程, 2014,22(2): 406-413 DOI: 10.3788/OPE.20142202.0406.
SHI Liu-jia,DONG Jing-xin,TAN Ying-jun etc. Optimization of structure parameters of channel-type electromagnetic microvalves[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 406-413 DOI: 10.3788/OPE.20142202.0406.
优化了通道型电磁常闭微阀的结构参数
以提高其工作性能。基于近似结构模型对结构参数进行理论分析;以泄漏率为指标
利用有限元方法仿真分析了微通道的宽度、高度
底膜厚度
顶膜厚度及电磁驱动机构压力等主要结构参数对泄漏率的影响。提取了经验公式
基于正交实验法研究了结构参数对泄漏率和开启率的影响。最后
结合理论分析、仿真和正交实验结果对微阀结构参数进行了优化。实验结果表明
通道高度和宽度对泄漏率影响最大
通道高度对开启率影响最大。获得最优开闭性能的结构参数组合为:通道宽度1 mm
高度0.1 mm
底膜厚度0.2 mm
顶膜厚度0.2 mm
电磁机构压力3×10
4
Pa。基于该结构参数组合的微阀在10 kPa内可以实现零泄漏及近似完全开启。该阀具有易与微流控芯片集成、低电压驱动、制作简单、无死体积等优点。
The structure parameters of a channel-type electromagnetic normally-closed microvalve were optimized to improve its performance. Firstly
the structure parameters were analyzed theoretically based on an approximate structure model. The impacts of main structure parameters on the leakage rate
such as the width and height of a microchannel
the thicknesses of bottom and top films
and the pressure generated by a electromagnetic mechanism were analyzed based on the Finite Element Simulation(FES)
and then a empirical formula was established. On the orthogonal experiment method
the influences of the structure parameters on the leakage rate and the open rate were also researched. Finally
the structure parameters of the microvalve were optimized according to the theoretical analysis
FES and the experiment results. The experimental results show that the width and height of the microchannel have the effect on the leakage rate greatly
and the channel height effects on the open rate most.Furthermore
the optimal structure parameters of the microvalve are the width and height to be 1 mm and 0.1 mm
the bottom and top film thicknesses both to be 0.2 mm
and the pressure to be 3×10
4
Pa
respectively. On the parameters mentioned above
the microvalve has no detectable leakage flow when the backpressure is up to 10 kPa. The microvalve shows its advantages on the low-voltage driving
zero dead volume
simple process and easy to integrate with microfluidic devices.
KWANG W O, CHONG H A. A review of microvalves[J]. Journal of Micromechanics and Microengineering, 2006, 16:13-39.
KWANG W O, RONG R, CHONG H A. Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration[J]. Journal of Micromechanics and Microengineering, 2005, 15:2449-2455.
TAO L, ALLAN T, EVANS S C, et al.. Compact, power-efficient architectures using microvalves and microsensors, for intrathecal, insulin, and other drug delivery systems [J]. Advanced Drug Delivery Reviews, 2012, 64:1639-1649.
KAZUSHI Y,SHUJI T,YOSUKE H, et al. Normally closed electrostatic microvalve with pressure balance mechanism for portable fuel cell application[J]. Sensors and Actuators A, 2010, 157:299-306.
FENG G H, CHOU Y C. Fabrication and characterization of thermally driven fast turn-on microvalve with adjustable backpressure design[J]. Microelectronic Engineering, 2011, 88: 187-194.
SIMONE G,PEROZZIELLO G, SARDELLA G, et al.. A microvalve for hybrid microfluidic systems[J]. Microsyst Technol, 2010, 16:1269-1276.
NEUMANN C, VOIGT A,PIRES L. Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves[J]. Microfluid Nanofluid, 2013,14:177-186.
赵明丽, 黄琴, 张玮, 等. 悬臂梁阀单腔压电泵设计方法研究[J]. 光学 精密工程, 2006, 14(4): 607-611.
ZHAO M L, HUANG Q, ZHANG W, et al.. Investigation on design method of single chamber piezoelectric pump with cantilever valve [J]. Opt. Precision Eng., 2006, 14(4): 607-611.(in Chinese)
杜新, 张平, 刘永顺, 等. 基于PDMS和玻璃材料的毛细管被动阀临界压力分析[J]. 光学 精密工程, 2011, 19(8): 1852-1858.
DU X, ZHANG P, LIU Y SH, et al.. Burst pressure of capillary burst valve based on glass and PDMS [J]. Opt. Precision Eng., 2011, 19(8):1852-1858.
SHI L J, TAN Y J, DONG J X, et al.. Design and optimization of an electromagnetic microvalve for portable cell culture biochips [J]. The 3rd International Conference on Advances in Microfluidics and Nanofluidics, 2012: 62-64.
NOBUYUKI F,WEI G,SHUICHI T. Rapid prototyping of microstructures with bell-shaped cross-sections and its application to deformation-based microfluidic valves[J]. Advanced Materials, 2004, 16 (15):1320-1323.
徐挺. 相似方法及其应用[M]. 北京:机械工业出版社,1995.
XU T. Similarity Method and Its Applications[M]. Beijing: Mechanical Industry Press, 1995. (in Chinese )
金良超. 正交设计与多指标分析[M]. 北京:中国铁道出版社,1988.
JIN L CH. Orthogonal Designs and Multifactor Analysis [M]. Beijing: China Railway Press, 1988. (in Chinese )
0
浏览量
640
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构