浏览全部资源
扫码关注微信
上海大学 快速制造工程中心 上海,200444
收稿日期:2013-09-20,
纸质出版日期:2014-02-20
移动端阅览
于永泽,刘媛媛*,陈伟华等. 溶剂挥发对静电纺丝纳米纤维支架直径与沉积的影响[J]. 光学精密工程, 2014,22(2): 420-425
YU Yong-ze, LIU Yuan-yuan, CHEN Wei-hua etc. Effect of solvent evaporation on diameter and deposition of nanofibrous scaffold in electrospinning[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 420-425
于永泽,刘媛媛*,陈伟华等. 溶剂挥发对静电纺丝纳米纤维支架直径与沉积的影响[J]. 光学精密工程, 2014,22(2): 420-425 DOI: 10.3788/OPE.20142202.0420.
YU Yong-ze, LIU Yuan-yuan, CHEN Wei-hua etc. Effect of solvent evaporation on diameter and deposition of nanofibrous scaffold in electrospinning[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 420-425 DOI: 10.3788/OPE.20142202.0420.
为实现静电纺丝纳米纤维生物支架的可控制备
实验研究了不同溶剂挥发速度对聚己酸内酯(Polycaprolactone
PCL)纳米纤维直径和纤维沉积面积的影响。首先
使用挥发速度不同的溶剂分别配制相同浓度的PCL纺丝溶液
在外加电压为15 kV
纤维接收距离为12 cm的条件下进行静电纺丝;然后
利用钨灯丝扫描电镜测量所制备的纳米纤维直径和沉积面积
并使用最小二乘法拟合计算实验数据
推导出溶剂挥发速度与纤维直径和纤维沉积面积的比例关系。结果表明
随着溶剂挥发速度的增加
纳米纤维的平均直径从98 nm(标准偏差为21.14 nm)上升到205 nm(标准偏差为38.83 nm)
溶剂挥发速度与纤维直径的比例关系为:
d∝N
0.25
i
;纤维的沉积面积从143 cm
2
下降到35 cm
2
溶剂挥发速度与纤维沉积面积的比例关系为:
S∝N
-0.18
i
。实验结果和建立的比例关系式能够为纳米纤维生物支架的可控制备提供可靠的数据基础和理论指导。
To achieve the controllable manufacturing of electrospun nanofibrous scaffolds
the effects of evaporation rates of different solvents on the fiber diameters and deposition configurations of electrospun nanofibers were investigated experimentally. Firstly
polycaprolactone (PCL) was respectively dissolved in various solvents with different evaporation rates and the electrospun was performed under applied voltage of 15 kV and a receiving distance of 12 cm. Then
the diameters and deposited areas of nanofibers were measured by a scanning electron microscopy. Furthermore
relational expressions between the average diameter and the solvent evaporation rate
the deposited area and the solvent evaporation rate were established by using least square method. The results show that the average diameter of nanofibers increases from 98 nm( with the standard deviation 21.14 nm) to 205 nm (with the standard deviation 38.83 nm) and the deposited areas of electrospun nanofiber webs decrease from 143 cm
2
to 35 cm
2
with increasing solvent evaporation rates. The mean diameter of nanofiners has a proportion relation with solvent evaporation rate of
d∝N
0.25
i
and the relation of evaporation rate and deposition area is
S∝N
-0.18
i
. The experimental results and relational expressions can offer the valuable information for guiding the controllable manufacturing of electrospun nanofibrous scaffolds.
FORMHALS A. Process and apparatus for preparing artificial threads [P]. US:1975 504, 1934.
ZHAO SH F, ZHOU Q H, LONG Y Z, et al.. Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates [J]. Nanoscale, 2013, 5(11): 4993-5000.
XU H, CUI W G, CHANG J. Fabrication of patterned PDLLA/PCL composite scaffold by electrospinning [J]. Journal of Applied Polymer Science, 2013, 127(3): 1550-1554.
LANDAU O, ROTHSCHILD A. Microstructure evolution of TiO2 gas sensors produced by electrospinning [J]. Sensors and Actuaors, B: Chemical, 2012, 171-172: 118-126.
李文望,郑高峰,王翔,等. 电纺直写纳米纤维在图案化基底的定位沉积[J]. 光学 精密工程,2010, 18(10):2231-2238.
LI W W, ZHENG G F, WANG X, et al.. Position deposition of electrospinning direct-writing nanofiber on pattern substrate [J]. Opt. Precision Eng., 2010, 18(10): 2231-2238. (in Chinese)
赵恩铭,雒莘梓,李乐,等. 电纺氧化硅凝胶亚微米光波导[J]. 光学 精密工程,2012, 20(6):1282-1287.
ZHAO E M, LUO SH Z, LI L, et al.. Electrospun silicon gel submicrometer optical waveguides [J]. Opt. Precision Eng., 2012, 20(6): 1282-1287. (in Chinese)
MUNIR M M, NURYANTINI A Y, ABDULLAH M, et al.. Prepatation of polyacrylonitrile nanofibers with controlled morphology using a constant-current electrospinning system for filter applications [J]. Materials Science Forum, 2013, 737: 159-165.
PU C C, HE J X, CUI SH ZH, et al.. Effect of electric fields on a novel enclosed air-jet electrospinning set-up [J]. Fibers and Polymers, 2013, 14(3): 382-388.
GAUTAM S, DINDA A K, MISHRA N C. Fabrication and characterization of PCL/gelatin composite nanofibers scaffold for tissue engineering applications by electrospinning method [J]. Materials Science and Engineering C, 2013, 33(3): 1228-1235.
ZHU J X, MA Y L, ASAKURA T. Preparation of small-diameter silk fibroin tubular scaffolds with electrospinning method [J]. Materials Science Forum, 2013, 745-746: 1-5.
TAYLOR G. Electrically driven jets [J]. Mathematical and Physical Sciences, 1969, 313: 453-475.
RUTLEDGE G C, FRIDRIKH S V. Formation of fibers by electrospinning [J]. Advanced Drug Delivery Reviews, 2007, 59: 1381-1384.
刘大利,郭俊,方淑慧,等. 使用目标多特征识别的纳米纤维制造在线监测系统[J]. 光学 精密工程,2012, 20(2):360-368.
LIU D L, GUO J, FANG SH H, et al.. On-line monitor system for nanoscale fiber manufacturing based on multi-featured pattern recognition [J]. Opt. Precision Eng., 2012, 20(2): 360-368. (in Chinese)
RENEKER D H, YARIN A L, FONG H, et al.. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning [J]. Journal of Applied Physics, 2000, 87(9): 4531-4547.
JENTZSCH E, GUI O, OZNERGIZ E. A comprehensive electric field analysis of a multifunctional elelctrospinning platform [J]. Journal of Electrostatics, 2013, 71(3): 294-298.
JIA L, QIN X H. Effect of solution concentration on jet stretching of electrospinning PVA nanofibery [J]. International Journal of Fluid Mechanics Research, 2011, 38(6): 479-488.
YANG R R, HE J H, XU L, YU J Y. Effect of solution concentration on diameter and morphology of PVA nanofibres in bubble electrospinning process [J]. Materials Science and Technology, 2011, 26(11): 1313-1316.
GLAVCHEV I, NIKOLOV R N, VALCHEC P. Determination of evaporation rates of mixed solvents with the formation of thin film for membranes [J]. Polymer Testing, 2003, 22(5): 529-532.
YARIN A L, KOOMBHONGSE S, RENEKER D H. Bending instability in electrospinning of nanofibers [J]. Journal of Applied Physics, 2001, 89(5): 3018-3026.
0
浏览量
668
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构