浏览全部资源
扫码关注微信
北京理工大学 光电学院 光电成像技术与系统教育部重点实验室 北京,100081
收稿日期:2013-06-10,
纸质出版日期:2014-02-20
移动端阅览
肖若秀,杨健,宋凌等. 应用于医学三维影像的血管结构自动提取[J]. 光学精密工程, 2014,22(2): 443-450
XIAO Ruo-xiu,YANG Jian,SONG Ling etc. Automatic blood vessel extraction for CTA images[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 443-450
肖若秀,杨健,宋凌等. 应用于医学三维影像的血管结构自动提取[J]. 光学精密工程, 2014,22(2): 443-450 DOI: 10.3788/OPE.20142202.0443.
XIAO Ruo-xiu,YANG Jian,SONG Ling etc. Automatic blood vessel extraction for CTA images[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 443-450 DOI: 10.3788/OPE.20142202.0443.
针对从计算机断层扫描血管造影术(CTA)的三维体数据中提取血管结构信息通常需要大量的人为介入操作的问题
提出了一种全自动血管分割方法。首先
采用多尺度增强滤波器对数据中的管状结构进行增强
剔除非管状结构
并过滤噪声。然后
利用Sigmoid函数作用于梯度图像产生水平集的速度图像
并通过测地活动轮廓模型迭代逼近真实的三维血管轮廓。最后
通过拉普拉斯算法对提取的血管表面网格进行平滑处理
获得光滑的血管曲面。实验采用胸部和颈部的CTA体数据对算法进行测试
结果表明:该方法无需人工干预即可从CTA体数据中准确地提取出血管的三维信息;血管中心线提取的平均误差为0.26 mm
直径测量平均误差为0.16 mm
分割精度满足临床血管疾病辅助诊疗的要求。
When vascular structure information is segmented from three-dimensional data of Computed Tomography Angiography(CTA)
it usually involves considerable amount of human intervention. To improve the vessel extraction efficiency
a fully automatic extraction method was proposed to segment blood vessels from three-dimensional data sets. Firstly
a multi-scale enhancement filter was developed to enhance the tubular-like structures
by which the non-tubular structures and noise were effectively removed. Then
a gradient image was combined with Sigmoid function to produce the speed image
and the Geodesic Active Contour(GAC) level set was utilized to approximate the real three dimensional vascular outline. Thereafter
the obtained vasculatures were processed by Laplacian smoothing function and a smoothed vascular surface was obtained. The proposed method was validated on both chest and neck CTA data. Experimental results show that blood vessels can be segmented accurately and automatically without human intervention. According to the phantom experiments
the average errors estimated for centerline and diameter of extracted vessels are 0.26 mm and 0.16 mm respectively. As there is no human interaction involved in the segmentation
the developed method can be utilized for the computer-assisted diagnosis of vascular related diseases in clinical practices.
张啸飞,胡大一,丁荣晶,等. 中国心脑血管疾病死亡现况及流行趋势[J].中华心血管病杂志,2012,40(3): 179-187.
ZHANG X F, HU D Y, DING R J, et al.. Status and trend of cardio-cerebral-vascular diseases mortality in China: data from national disease surveillance system between 2004 and 2008 [J]. Chinese Journal of Cardiology, 2012, 40(3): 179-187. (in Chinese)
王岭,陈晓冬,郁道银,等. 冠脉中导引丝与血管骨架空间相对位置的计算[J].光学 精密工程,2010,18(12): 2702-2709.
WANG L, CHEN X D, YU D Y, et al.. Calculation of spatial relative position between catheter and vessel centerline in coronary artery [J]. Opt. Precision Eng., 2010, 18(12): 2702-2709. (in Chinese)
张麒,汪源源,马剑英,等. 基于血管内超声图像自动识别易损斑块[J].光学 精密工程,2011,19(10): 2507-2519.
ZHANG Q, WANG Y Y, MA J Y, et al.. Automatic identification of vulnerable plaques based on intravascular ultrasound images [J]. Opt. Precision Eng., 2011, 19(10): 2507-2519. (in Chinese)
KELM B M, MITTAL S, ZHENG Y, et al.. Detection, grading and classification of coronary stenoses in computed tomography angiography [C]. Proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention, Berlin, Germany: Springer,2011:25-32.
SCHERL H, HORNEGGER J, PRUMMER M, et al.. Semi-automatic level-set based segmentation and stenosis quantification of the internal carotid artery in 3D CTA data sets [J]. Medical Image Analysis, 2007, 11(1): 21-34.
YI J, RA J B. A locally adaptive region growing algorithm for vascular segmentation [J]. International Journal of Imaging Systems and Technology, 2003, 13(4): 208-214.
HAMEETEMAN K, ZULUAGA M, FREIMAN M, et al.. Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading [J]. Medical Image Analysis, 2011, 15(4): 477-488.
DEHKORDI M T, SADRI S,DOOSTHOSEINI A. A review of coronary vessel segmentation algorithms [J]. Journal of Medical Signals and Sensors, 2011, 1(1):49-54.
CONVERSANO F, FRANCHINI R, DEMITRI C, et al.. Hepatic vessel segmentation for 3D planning of liver surgery: experimental evaluation of a new fully automatic algorithm [J]. Academic radiology, 2011, 18(4): 461-470.
OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12-49.
张麒,汪源源,王威琪,等. 活动轮廓模型和Contourlet多分辨率分析分割血管内超声图像[J].光学 精密工程,2008,16(11): 2303-2311.
ZHANG Q, WANG Y Y, WANG W Q, et.al.. Intravascular ultrasound image segmentation based on active contour model and Contourlet multiresolution analysis [J]. Opt. Precision Eng., 2008, 16(11): 2303-2311. (in Chinese)
PICCINELLI M, VENEZIANI A, STEINMAN D A, et al.. A framework for geometric analysis of vascular structures: application to cerebral aneurysms [J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1141-1155.
PARAGIOS N, DERICHE R. Geodesic active contours and level sets for the detection and tracking of moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280.
WHITAKER R T, XUE X. Variable-conductance, level-set curvature for image denoising [C]. 2001 International Conference on Image Processing, Piscataway, N.J., USA: IEEE, 2001: 142-145.
FRANGI A F, NIESSEN W J, VINCKEN K L, et al.. Multiscale vessel enhancement filtering [C]. Proceedings of the 1st International Conference on Medical Image Computing and Computer-Assisted Interventation, Berlin, Germany: Springer, 1998: 130-137.
ZHANG D P . Coronary artery segmentation and motion modelling [D]. London: Imperial College London, 2010.
GUO Y H. Creases-persevering mesh smoothing based on the discrete differential operators [C]. 2012 Fourth International Conference on Digital Home (ICDH), Los Alamitos, CA, USA: IEEE Computer Society, 2012: 151-155.
ANTIGA L, PICCINELLI M, BOTTI L, et al.. An image-based modeling framework for patient-specific computational hemodynamics [J]. Medical & Biological Engineering & Computing, 2008, 46(11): 1097-1112.
0
浏览量
625
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构