浏览全部资源
扫码关注微信
1. 第二炮兵工程大学 信息工程系,陕西 西安,710025
2. 96215部队,广西 柳州,545616
3. 武警工程大学,陕西 西安,710086
收稿日期:2013-07-12,
纸质出版日期:2014-02-20
移动端阅览
杨亚威,李俊山,张士杰等. 基于视觉对比敏感度与恰可察觉失真感知的图像复原[J]. 光学精密工程, 2014,22(2): 459-466
YANG Ya-wei, LI Jun-shan, ZHANG Shi-jie etc. Image restoration based on visual contrast sensitivity and just noticeable distortion perception[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 459-466
杨亚威,李俊山,张士杰等. 基于视觉对比敏感度与恰可察觉失真感知的图像复原[J]. 光学精密工程, 2014,22(2): 459-466 DOI: 10.3788/OPE.20142202.0459.
YANG Ya-wei, LI Jun-shan, ZHANG Shi-jie etc. Image restoration based on visual contrast sensitivity and just noticeable distortion perception[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 459-466 DOI: 10.3788/OPE.20142202.0459.
针对传统复原算法在低信噪比情况下复原结果感知效果差的问题
提出了一种基于视觉对比敏感度与恰可察觉失真感知的图像复原方法。首先
利用离散余弦变换(DCT)分解图像
将图像编码为不同尺度下的一系列子带
利用概率和模型及DCT感知模型计算每条子带的恰可察觉失真阈值
并采用明可夫斯基距离计算失真度量;然后
对于每个尺度下的每条子带
利用一个迭代的两断对分程序来调整每个尺度下的每条子带的通道权重
直至子带的失真度量恰好等于期望的失真阈值;最后
利用对比敏感函数对每条子带中的系数进行视觉敏感度加权
通过DCT逆变换对视觉感知加权后的系数进行重构以得到最终的复原图像。基于LIVE图像库的实验结果表明
本文复原算法不仅能够有效地增加图像的信噪比
而且能够很好地改善图像的感知质量。
As traditional restoration algorithms have weaker perceptual opinion in a low Peak Signal Noise Ratio(PSNR)
a novel image restoration approach based on visual contrast sensitivity and Just Noticeable Distortion(JND) perception was proposed. Firstly
the image was coded as a sets of bands in different scales with Discrete Cosine Transform(DCT)
the JND threshold of each band was calculated with probability summation and DCT perception model
and distortion measure was calculated with a Minkowski metric. Then
an iterative bisection procedure was used to adjust the channel weight for each band in each scale until the perceptual distortion of band was just equal to the anticipant distortion threshold. Finally
the coefficient of each band was weighted with visual contrast sensitivity function
and the coefficient after visual perceptual weighting was reconstructed through an inverse DCT to gain the restoration image. Experimental results based on LIVE image database show that this algorithm can effectively enhance PSNR and improve perceptual quality of the recovery images.
LI D X,ZHAO Y,XU D. Algorithm of blur identification and image restoration based on parameter estimation [J]. Infrared and Laser Engineering, 2010, 39(1): 166-172.
谢冰, 焦斌亮. 基于航天TDICCD 相机像移分析的PSF 估计及图像复原算法研究[J]. 宇航学报, 2010, 31(3): 936-940.
XIE B, JIAO B L. The PSF estimation method and image restoration algorithm based on image-motion analysis of spaceborne TDICCD camera [J]. Journal of Astronautics, 2010, 31(3): 936-940.(in Chinese)
韩小芳, 胡家升. 运动与离焦模糊图像的复原[J]. 光子学报, 2012, 41(1): 87-93.
HAN X F,HU J SH. Restoration of motion blur image and defocus blur image [J]. Acta Photonica Sinica, 2012, 41(1): 87-93.(in Chinese)
AYERS G R, DAINTY J C. Iterative blind deconvolution method and its applications [J]. Optics Letters, 1988, 13(7): 547-549.
KURDUR D, HATZINAKOS D. Blind image deconvolution[J]. IEEE Single Processing Magazine, 1996, 13(3): 43-64.
MONEY J H, KANG S H. Total variation minimizing blind deconvolution with shock filter reference [J]. Image and Vision Computing, 2008, 26(2): 302-314.
洪汉玉, 何成剑, 陈以超, 等. 基于各向异性规整化的总变分盲复原算法研究[J]. 红外与激光工程, 2007, 36(1): 118-122.
HONG H Y,HE CH J,CHEN Y CH, et al.. Blind restoration algorithm of total variation based on anisotropic regularizations[J]. Infrared and Laser Engineering, 2007, 36(1): 118-122.(in Chinese)
孙韶杰, 吴琼, 李国辉. 基于变分贝叶斯估计的相机抖动模糊图像的盲复原算法[J]. 电子与信息学报, 2010, 32(11): 2674-2679.
SUN SH J,WU Q,LI G H. Blind image deconvolution algorithm for camera-shake deblurring based on variational Bayesian estimation [J]. Journal of Electronics & Information Technology, 2010, 32(11): 2674-2679.(in Chinese)
MANNOS J L, SAKRISON D J. The effects of a visual fidelity criterion on the encoding of images[J]. IEEE Trans. Information Theory, 1974, 4: 525-536.
NILL N B. A visual model weighted cosine transform for image compression and quality assessment [J]. IEEE Transactions on Communication, 1985, 33(6): 551-557.
INGO H, LINA J K. Adaptive image coding with perceptual distortion control [J]. IEEE Trans. on Image Processing, 2002, 11(3): 213-222.
WATSON A B. Probability summation over time[J]. Visual Research, 1979, 19: 515-522.
ROBSON J G, GRAHAM N. Probability summation and regional variation in contrast sensitivity across the visual field [J]. Vision Research, 1981,21(3):409-418.
AHUMADA A J, PETERSON H A. Luminance-model-based DCT quantization for color image compression[C]. Proc. Human Vision, Visual Processing, Digital Display III, 1992: 365-374.
FOLEY J M, BOYNTON G M. A new model of human luminance pattern vision mechanisms: Analysis of the effects of pattern orientation, spatial phase and temporal frequency[C]. Proc. SPIE, 1994,2054:32-42.
FOLEY J M. Human luminance pattern-vision mechanisms: Masking experiments require a new model [J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1994, 11(6): 1710-1719.
WATSON A B. DCTune: A technique for visual optimization of DCT quantization matrices for individual images[C]. Soc. Information Display Dig. Tech. Papers XXIV, 1993: 946-949.
WATSON A B. Image data compression having minimum perceptual error:U S,5426512[P].1995.
SHEIKH H R, BOVIK A C, CORMACK L, et al.. LIVE image quality assessment database[DB/OL]. [2013]http://live.ece.utexas.edu/research/quality.
MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Trans. Image Process, 2012, 21(12): 4695-4708.
MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices [J]. IEEE Signal Processing Letters, 2010, 17(5): 513-516.
0
浏览量
649
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构