浏览全部资源
扫码关注微信
1. 东南大学 机械工程学院,江苏 南京,211189
2. 淮海工学院,江苏 连云港,222005
收稿日期:2013-05-10,
纸质出版日期:2014-02-20
移动端阅览
陈恺,陈芳,戴敏等. 基于萤火虫算法的二维熵多阈值快速图像分割[J]. 光学精密工程, 2014,22(2): 517-523
CHEN Kai, CHEN Fang, DAI Min etc. Fast image segmentation with multilevel threshold of two-dimensional entropy based on firefly algorithm[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 517-523
陈恺,陈芳,戴敏等. 基于萤火虫算法的二维熵多阈值快速图像分割[J]. 光学精密工程, 2014,22(2): 517-523 DOI: 10.3788/OPE.20142202.0517.
CHEN Kai, CHEN Fang, DAI Min etc. Fast image segmentation with multilevel threshold of two-dimensional entropy based on firefly algorithm[J]. Editorial Office of Optics and Precision Engineering, 2014,22(2): 517-523 DOI: 10.3788/OPE.20142202.0517.
提出了基于萤火虫算法的二维熵多阈值快速图像分割方法以改善分割复杂图像和多目标图像时存在计算量大、计算时间长的问题。首先
分析了二维熵阈值分割原理
将二维熵单阈值分割扩展到二维熵多阈值分割。然后
引入萤火虫算法的思想
研究了萤火虫算法的仿生原理和寻优过程;提出了基于萤火虫算法的二维熵多阈值快速图像分割方法。最后
使用该方法对典型图像进行阈值分割实验
并与二维熵穷举分割法、粒子群算法(PSO)二维熵多阈值分割法进行比较。实验结果表明:该方法在单阈值分割、双阈值分割和三阈值分割时分别比二维熵穷举分割法快3.91倍
1040.32倍和8128.85倍;另外
在阈值选取的准确性和计算时间方面均优于PSO二维熵多阈值分割法。结果显示
基于萤火虫算法的二维熵多阈值快速图像分割方法能快速有效地解决复杂图像和多目标图像的分割问题。
A fast image segmentation method with multilevel threshold of two-dimensional entropy was proposed based on the firefly algorithm to overcome the large amount of calculation and long computing time. Firstly
the principle of two-dimensional entropy threshold segmentation was analyzed
and the single threshold segmentation of two-dimensional entropy was extended to multilevel threshold segmentation. Then
the bionic mechanism and searching optimization process of the firefly algorithm were analyzed
and the multilevel threshold segmentation method of two-dimensional entropy combined with firefly algorithm was proposed. Finally
typical image segmentation experiments by using the proposed method were performed and the results were compared with those of two-dimensional entropy exhaustive segmentation method and the multilevel threshold segmentation method of two-dimensional entropy based on Particle Swarm Optimization(PSO). Experimental results show that the speeds of the proposed method in single threshold segmentation
dual-threshold segmentation and the three threshold segmentation are 3.91
1 040.32 and 8 128.85 times faster than those of the two-dimensional entropy exhaustive segmentation method respectively. Moreover
the threshold selection accuracy and running speed of the proposed method are both better than those of the multilevel threshold segmentation method of two-dimensional entropy based on PSO. Therefore
the fast image segmentation method with multilevel threshold of two-dimensional entropy based on firefly algorithm can quickly and efficiently resolve complex and multi-target image segmentation problems.
程万胜,臧希浙,赵杰,等.面向Otsu阈值搜索的PSO惯性因子改进方法[J].光学 精密工程,2008,16(10):1907-1912.
CHENG W SH, ZANG X ZH,ZHAO J, et al.. Modified strategy to inertia weight in PSO for searching threshold of Otsu rule [J]. Opt. Precision Eng., 2008, 16(10): 1907-1912. (in Chinese)
何志勇,孙立宁,黄伟国,等.基于Otsu准则和直线截距直方图的阈值分割[J].光学 精密工程,2012,20(10):2315-2323.
HE ZH Y, SUN L N, HUANG W G, et al.. Thresholding segmentation algorithm based on Ostu ceiterion and line intercept histogram[J]. Opt. Precision Eng., 2012, 20(10): 2315-2323. (in Chinese)
张怀柱,向长波,宋建中,等.改进的遗传算法在实时图像分割中的应用[J].光学 精密工程,2008,16(2):333-337.
ZHANG H ZH, XIANG CH B, SONG J ZH, et al.. Application of improved adaptive genetic algorithm to image segmentation in real-time[J]. Opt. Precision Eng., 2008, 16(2): 333-337. (in Chinese)
KAPUR J N. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3):273-285.
BRINK A D. Thresholding of digital images using two-dimensional entropies [J]. Pattern Recognition, 1992, 25(8): 803-808.
PEDRAM G, MICAEL S C, JON A B, et al.. An efficient method for segmentation of images based on fractional calculus and natural selection[J]. Expert Systems with Applications, 2012, 39: 12407-12417.
HORNG M H. Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization[J]. Expert System with Applications, 2010, 37(6):4580-4592.
LAN J H,ZENG Y L. Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram [J]. Optik-Int. J. Light Electron Opt., 2013,124(18):3756-3760.
YANG X SH. Firefly algorithms for multimodal optimization [C]. In Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, 2009, 5792: 169-178.
LUKASIK S, ZAK S. Firefly algorithm for continuous constrained optimization tasks [C]. Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems Lecture Notes in Computer Science, 2009, 5796: 97-106.
HORNG M H, LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J]. Expert Systems with Applications, 2011, 38: 14805-14811.
0
浏览量
213
下载量
37
CSCD
关联资源
相关文章
相关作者
相关机构