浏览全部资源
扫码关注微信
1. 清华大学 航天航空学院 北京,100084
2. 宇航动力学国家重点实验室,陕西 西安,710043
3. 中国卫星海上测控部, 江苏 江阴,214431
收稿日期:2013-06-24,
修回日期:2013-08-14,
纸质出版日期:2014-04-25
移动端阅览
马鹏斌, 宝音贺西, 沐俊山. 利用火星卫星光学测量实现火星探测器自主导航[J]. 光学精密工程, 2014,22(4): 863-869
MA Peng-bin, BAOYIN He-xi, MU Jun-shan. Autonomous navigation of Mars probe based on optical observation of Martian moon[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 863-869
马鹏斌, 宝音贺西, 沐俊山. 利用火星卫星光学测量实现火星探测器自主导航[J]. 光学精密工程, 2014,22(4): 863-869 DOI: 10.3788/OPE.20142204.0863.
MA Peng-bin, BAOYIN He-xi, MU Jun-shan. Autonomous navigation of Mars probe based on optical observation of Martian moon[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 863-869 DOI: 10.3788/OPE.20142204.0863.
以火星探测为例,提出了通过对火星卫星进行光学测量实现火星探测器自主导航的方法。该方法在火星探测器上搭载光学相机,在飞向火星过程中对火星天然卫星(Phobos,火卫一;Deimos,火卫二)拍摄带有恒星背景的图像;通过恒星位置确定精确的惯性指向,利用得到的光学观测数据完成对火星探测器的自主导航。分别给出了基于扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)进行自主导航的方法和仿真计算结果。数据显示:EKF和UKF得到的结果基本一致,说明EKF在线性化过程中损失精度并不多。在巡航段后半程,与火星距离越近,导航精度越高。距离火星(1~5)×10
7
km时,取数据间隔为1 min,如果测量精度为0.1",导航精度可达10~100 km量级,速度精度为0.01 m/s量级;如果测量精度为1",导航精度也相应要低一个量级。另外,单独使用火卫二的导航精度要高于单独使用火卫一,联合使用火卫一和火卫二的精度最高。仿真计算结果表明,利用火星卫星光学测量的火星探测器自主导航,可满足火星探测器高精度导航的要求。
By taking Mars probing for an example
an autonomous navigation method for a Mars probe based on the optical observation of Martian moon is proposed. By carrying the Mars probe on an optical camera
the method uses the camera to take the images for natural satellites of the Mars (Phobos
Deimos)and their backgrounds in the process of flying to Mars. The star position is used to determine precisely inertial pointing
then
the autonomous navigation of Mars is completed by obtained right ascension and declination data from optical observation. The sequential estimation algorithms based on Extended Kalman Filter(EKF) and Unscented Kalman Filter(UKF) are given. The results show that the precision of EKF is similar to that of the UKF
which means that the precision loss of the EKF is not much in the linearization process. At cruising in the second half
the closer is the camera to Mars
the higher the navigation precision is. When the distance is (1-5)×10
7
km from Mars and the data interval is set to be 1 min
the navigation accuracy can reach 10-100 km magnitude
and the speed accuracy is 0.01 m/s. When the measurement precision is 0.1"
the navigation precision is lowered an order of magnitude. In addition
the navigation precision of Deimos alone is higher than that of the Phobos
and both of them to be used will get the highest accuracy. Simulation computation results show that the autonomous navigation for Mars detectors by the Martian moon optical measurement can satisfy the requirement of high precision navigation.
BATTIN R H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. Reston VA:American Institute of Aeronautics and Astronautics, 1999.
THOMAS C D, BORN G H. Viewing Phobos and Deimos for navigation Mariner 9[J]. Journal of Spacecraft and Rockets, 1974, 11:215-222.
BHASKARAN S, DESAI S D, DUMONT P J, et al. Orbit determination performance evaluation of the deep space 1 autonomous navigation system[C]. AIAA/AAS Space Flight Mechanics Meeting, Monterey, 1998.
RIEDEL J E, BHASKARAN S, DESAI S, et al. Deep space 1 technology validation report autonomous optical navigation[R]. Pasadena CA:JPL Publication, 2000.
BHASKARAN S, RIEDEL J E, SYNNOTT S P, et al.. The deep space 1 autonomous navigation system-A post-flight analysis[C]. AIAA/AAS Astrodynamics Specialist Conference, Denver, 2000.
FABRICIUS C, HOG E, MAKAROV V V, et al. The hipparcos and tycho catalogues[R]. ESA SP-1200, A1997(17).
HOG E, FABRICIUS C, MAKAROV V V, et al. The Tycho-2 catalogue of the 2.5 million brightest stars[J]. Astronomy & Astrophysics, 2000, 355(2):L27-L30.
孙瑾秋, 周军, 张臻, 等. 基于能量累加的空间目标星像质心定位[J]. 光学 精密工程, 2011, 19(12):3043-3048. SUN J Q, ZHOU J, ZHANG ZH, et al. Centroid location for space targets based on energy accumulation[J]. Opt. Precision Eng., 2011, 19(12): 3043-3048. (in Chinese)
魏新国, 徐佳, 张广军. 星敏感器质心定位的S曲线误差补偿[J]. 光学 精密工程 2013, 21(4):849-857. WEI X G, XU J, ZHANG G J. S-curve error compensation of centroiding location for star sensors[J].Opt. Precision Eng., 2013, 21(4):849-857.(in Chinese)
李黎. 深空探测轨道测定与控制[M]. 北京:国防工业出版社, 2012:112-117. LI L. Orbit Determination and Control for Deep Space Exploration[M]. Beijing:National Defense Industry Press, 2012:112-117. (in Chinese)
JACOBSON R A. The orbits and masses of the martian satellites and the libration of Phobos[J]. The Astronomical Journal, 2010, 139(2):668-679.
EUGENE F M, WILLIAM J F W. Solar System Astrophysics: Volume I Background Science and Inner Solar System[M]. Springer Science + Business Media, LLC, 2008.
RAOL J R, SINHA N K. On the orbit determination problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(3):274-291.
BAR-LTZHACK L Y, MEDAN Y. Efficient square root algorithm for measurement update in Kalman filtering[J]. Journal of Guidance and Control, 1983, 6(3):129-134.
JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[C]. Proceedings of the IEEE, 2004, 92(3):401-422.
ARULAMPALAM M S.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[C].IEEE Trans. Signal Processing, 2002, 50 (2):174-188.
0
浏览量
725
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构