浏览全部资源
扫码关注微信
上海理工大学 光电信息与计算机工程学院 上海,200093
收稿日期:2013-07-10,
修回日期:2013-09-03,
纸质出版日期:2014-04-25
移动端阅览
梁斌明, 胡艾青*, 蒋强等. 光子晶体负折射效应在糖溶液浓度检测中的应用[J]. 光学精密工程, 2014,22(4): 877-883
LIANG Bin-ming, HU Ai-qing*, JIANG Qiang etc. Application of photonic crystal negative refraction effect to sugar solution concentration detection[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 877-883
梁斌明, 胡艾青*, 蒋强等. 光子晶体负折射效应在糖溶液浓度检测中的应用[J]. 光学精密工程, 2014,22(4): 877-883 DOI: 10.3788/OPE.20142204.0877.
LIANG Bin-ming, HU Ai-qing*, JIANG Qiang etc. Application of photonic crystal negative refraction effect to sugar solution concentration detection[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 877-883 DOI: 10.3788/OPE.20142204.0877.
探讨了光子晶体负折射效应在糖溶液浓度检测中的应用,在软件中使用时域有限差分法对光在光子晶体中的传播进行了模拟实验。模拟显示:糖溶液的浓度变化与输出功率变化接近线性关系,而线性相关程度受介质柱半径常数的影响。进行了多组参数比对与优化,最终获得了线性度最高的输出功率与糖溶液浓度的对应关系。基于这个对应关系,提出了基于光子晶体负折射效应的糖溶液浓度检测方法并设计了相应的糖溶液浓度检测器。实验结果表明:基于光子晶体的糖溶液浓度检测器具有结构简单、测量精度高、响应速度快、易于与激光器件集成且不受外界电磁环境影响等优点。
The application of photonic crystal negative refraction effect to the concentration detection of sugar solution was explored and a simulation experiment on light propagation in a photonic crystal was performed by Finite Difference Time Domain(FDTD) method. Simulation experiments show that the concentration change of sugar solution has a linear relationship with output power changes and the linear correlation degree is affected by medium column radius constant. The obtained multiple parameters were compared and optimized
and eventually the linearity relationship between the highest output power and the concentration of sugar solution was obtained. Based on this relation
a sugar solution concentration detection method based on photonic crystal negative refraction effect was proposed and a corresponding concentration detector was developed. Compared to other detection methods
the application of photonic crystals is characterized by a small size
long life
easy to integrate with the laser device and is not subject to external electromagnetic environment effects.
YAB L E. Inhibited spontaneous emission in solid state physics and electronics[J]. Phys. Rev. Lett., 1987, 58: 20592-20562.
JOHN S. Strong localization of photon in certain disordered dielectric super lattices[J]. Phys. Rev. Lett., 1987, 58:2486-2489.
吴斌, 王庆康. 带反射回馈的高效光子晶体多路滤波器件[J]. 光学 精密工程, 2007, 15(8):1208-1214. WU B, WANG Q K. Highly efficient photonic crystal-based multichannel drop filters with reflection feedback[J]. Opt. Precision Eng., 2007, 15(8):1208-1214. (in Chinese)
崔乃迪, 梁静秋, 梁中翥, 等. 二维硅薄膜光子晶体波导的设计及制作[J]. 光学 精密工程, 2010, 18(12):2549-2556. CHUI N D, LIANG J Q, LIANG ZH Y, et al. Design and fabrication of two-dimensional photonic crystal waveguides on silicon films[J]. Opt. Precision Eng., 2010, 18(12):2549-2556. (in Chinese)
陈胜钰, 庄冬霞, 强则煊, 等. 基于自准直效应的硅基光子晶体1×4光复用器[J]. 光学 精密工程, 2012, 20(12):2626-2632. CHEN SH Y, ZHUANG D X, QIANG Z X, et al. 1×4 optical multiplexer based on self-collimation effect in silicon photonic crystals[J]. Opt. Precision Eng., 2012, 20(12):2626-2632. (in Chinese)
KNIGHT J C. Photonic crystal fibers[J]. Nature, 2003, 424: 847-851.
AO X, LIU L, WOSINSKI L, et al. Polarization beam splitter based on a two-dimentional photonic crystal of pillar type[J]. Appl. Phys.Lett., 2006, 89: 171115.
KIM K, LEISHER P O, DANNER A J, et al. Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED[J]. IEEE Photon. Technol. Lett., 2006, 18:1876-1878.
SRINIVASAN K, PAINTER O, COLOMBELLI R, et al. Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser[J]. Appl. Phys. Lett., 2004, 84: 4164-4166.
HUANGFU J T, RAN L X, CHEN H SH, et al. Experimental confirmation of negative refractive index of ametamaterial composed of W-like metallic patterns[J]. Appl. Phys. Lett., 2004, 84(9):1537-1539.
CHEN H SH, RAN L X, HUANGFU J T, et al. Negative refraction of acombined double S-shaped metamaterial[J]. Appl. Phys. Lett., 2005, 86:151909.
ZHAO X P, ZHAO Q, KANG L, et al. Defect effect of split ring resonators in lefted-handed metamaterials[J]. Phys. Lett.A, 2005, 346:87-91.
POPA B I, CUMMER S A. Direct measurement of evanescent wave enhancement inside passive metamaterials[J]. Phys. Rev.E, 2006, 73:0166179.
CHEN H, RAN L, WANG D, et al. Metamaterial with randomized patterns for negative refraction of electromagnetic waves[J]. Appl. Phys. Lett., 2006, 88: 031908.
梁铨庭. 物理光学[M]. 北京:电子工业出版社, 2008. LIANG Q T. Physical Optics[M]. Beijing: Electronic Industry Press, 2008.(in Chinese)
NOTOMI M. Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap[J]. Phys. Rev. B, 2000, 62:10696.
YEE K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Trans. Antennas Propagat., 1966, 14(3):302-307.
BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. J. Comput. Phys., 1994, 114:185-200.
CHEN J B, WANG Y, JIA B H, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonic, 2011, 5(4):239-245.
冯莉, 梁斌明, 李卓, 等. 入射光频率变化对负折射现象的影响[J]. 激光与光电子学进展, 2008, 45(3):61-65. FENG L, LIANG B M, LI ZH, et al.. Dependence of negative refraction phenomenon on incident light frequency[J]. Laser & Optoelectronics Progress, 2008, 45(3):61-65. (in Chinese)
白泽生, 刘竹琴, 徐红. 几种液体的折射率与其浓度关系的经验公式[J]. 延安大学学报:自然科学版, 2004, 23(1):33-36. BAI ZH SH, LIU ZH Q, XU H, An experienced formula about the connection of refraction index and consistence of several liquid[J]. Journal of Yanan University:Natural Science Edition, 2004, 23(1):33-36.(in Chinese)
0
浏览量
487
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构