浏览全部资源
扫码关注微信
1. 山东大学 控制科学与工程学院,山东 济南,250061
2. 泰山医学院 信息工程学院,山东 泰安,271016
3. 山东大学威海校区 机电与信息工程学院,山东 威海,264209
收稿日期:2013-12-05,
修回日期:2014-01-25,
纸质出版日期:2014-04-25
移动端阅览
赵学良, 张承进, 顾建军等. 离散化正弦电压作用下的压电驱动器蠕变特性[J]. 光学精密工程, 2014,22(4): 942-948
ZHAO Xue-liang, ZHANG Cheng-jin, GU Jian-jun etc. Creep characteristics of stack piezoactuator effected by discretized sine voltage[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 942-948
赵学良, 张承进, 顾建军等. 离散化正弦电压作用下的压电驱动器蠕变特性[J]. 光学精密工程, 2014,22(4): 942-948 DOI: 10.3788/OPE.20142204.0942.
ZHAO Xue-liang, ZHANG Cheng-jin, GU Jian-jun etc. Creep characteristics of stack piezoactuator effected by discretized sine voltage[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 942-948 DOI: 10.3788/OPE.20142204.0942.
研究了具有不同离散化台阶的正弦电压对压电陶瓷驱动器蠕变大小以及蠕变起始时间的影响,采用新的数学模型分析了低频下压电陶瓷驱动器的蠕变特性。首先,对0.025 Hz/0V~60 V正弦电压输入信号进行了5种倍数关系的离散化,分析了蠕变与输入电压的关系以及蠕变与输入台阶电压压差的关系。然后,按照提出的数学模型,在符合文中所述两种准则前提下,对蠕变起始时间进行了预测。实验结果表明,上升段蠕变变化范围最大出现在台阶电压等于47.7 V时,而下降段蠕变变化范围最大出现在台阶电压等于12.3 V;相比于20个台阶,320个台阶对应的上升段最大蠕变增长量下降了899.5%,而在下降段最大蠕变的这一比值增大到了936.9%。使用所提公式对蠕变起始时间进行预测,得到当台阶电压为12.3 V时,20、40、80、160、320个台阶的蠕变起始时间分别在0.959、0.911、0.813、0.664和0.016 ms以后。蠕变与输入电压以及蠕变与输入台阶电压差值都是迟滞关系,并且台阶蠕变随着台阶数量的增加而减小。不同离散化的电压信号改变了蠕变的起始时间,台阶电压数量越多,蠕变起始时间越早。
The influence of sine voltages with different discretized stairs on the size and initial time of the creep for a stack PZT was investigated. A new model was presented to investigate the creep characteristics of the stack PZT in a low frequency. Firstly
a 0.025 Hz/0 V-60 V sine wave was discretized with five multiple relations. The relations between the creep and the stair voltage or the creep and the difference of stairs were also analyzed. Then
the initial time of the creep was predicted by the proposed model. Experimental results indicate that the biggest creep range in the rising period appears on the stair voltage of 47.7 V
and that in the decline period appears on the stair voltage of 12.3 V. As compared to 20 stairs
320 stairs correspond to the period of maximum creep growth in the rising falls by 899.5%
and that in the declining period is up to 936.9%. Using the proposed formula to predict creep initial time
the creep initial time of 20
40
80
160 and 320 stairs is 0.959
0.911
0.813
0.664
and 0.016 ms later respectively when the stair voltages is 12.3 V. Moreover
the differences between the creep and the input voltage and the creep and the input voltage are hysteresis
and the stair creep decreases with increasing the number of stairs. The voltage signal with different discretizations has changed the initila time of creep
and the more the stair voltage
the sooner the initial time of creep.
DEVASIA S, ELEFTHERIOU E, MOHEIMANI S O R. A survey of control issues in nanopositioning[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5): 802-823.
JUNG H, GWEON D G. Creep characteristics of piezoelectric actuators[J]. Review of Scientific Instruments, 2000, 71(4):1896-1900.
BASEDOW R W, COCKS T D. Piezoelectric ceramic displacement characteristic at low frequencies and their consequences in fabry-perot interferometry[J]. Journal of Physics E: Scientific Instruments, 1980, 13:840-844.
赖志林, 刘向东, 耿洁, 等. 压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学 精密工程, 2011, 19(6):1281-1290. LAI ZH L, LIU X D, GENG J, et al. Sliding mode control of hysteresis of piezoceramic actuator based on inverse Preisach compensation[J]. Opt. Precision Eng., 2011, 19(6):1281-1290. (in Chinese)
陈辉, 谭永红, 周杏鹏, 等. 压电陶瓷执行器的动态模型辨识与控制[J]. 光学 精密工程, 2012, 20(1):88-95. CHEN H, TAN Y H, ZHOU X P, et al. Identification and control of dynamic modeling for piezoceramic actuator[J]. Opt. Precision Eng., 2012, 20(1):88-95. (in Chinese)
张栋, 张承进, 魏强, 等. 压电工作台的神经网络建模与控制[J]. 光学 精密工程, 2013, 20(3):587-596. ZHANG D, ZHANG CH J, WEI Q, et al. Modeling and control of piezo-stage using neural networks[J]. Opt. Precision Eng., 2013, 20(3):587-596. (in Chinese)
PING G, JOUANEH M. Tracking control of a piezoceramic actuator[J]. IEEE Transactions on Control Systems Technology, 1996, 4(3):209-216.
HUES S M, DRAPER C F, LEE K P, et al. Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy[J]. Review of Scientific Instruments, 1994, 65(5):1561-1565.
XU Q S, LI Y M. Micro-/nanopositioning using model predictive output integral discrete sliding mode control[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2):1161-1170.
ZHAO X L, ZHANG CH J, LIU H B, et al. Analysis of hysteresis-free creep of the stack piezoelectric actuator[J]. Mathematical Problems in Engineering, 2013, art. ID 187262:10.
KUHNEN K, KREJCI P. Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems a new preisach modeling approach[J]. IEEE Transactions on Automatic Control, 2009, 54(3):537-550.
GU G Y, ZHU L M. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model[J]. Review of Scientific Instruments, 2010, 81(8):085104.
PESOTSKI D, JANOCHA H, KUHNEN K. Adaptive compensation of hysteretic and creep non-linearities in solid-state actuators[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(14):1437-1446.
CHEN M Y, HUANG H H, HUNG S K. A new design of a submicropositioner utilizing electro-magnetic actuators and flexure mechanism[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1):96-106.
LI Y M, XU Q S. A novel piezoactuated XY stage with parallel, decoupled, and stacked flexure structure for micro-/nanopositioning[J]. IEEE Transactions on Industrial Electronics, 2011, 58(8):3601-3615.
SHIOU F J, CHEN C J, CHIANG C J, et al. Development of a real-time closed-loop micro-/nano-positioning system embedded with a capacitive sensor[J]. Measurement Science and Technology, 2010, 21(5):054007.
RU CH H, SUN L N. Hysteresis and creep compensation for piezoelectric actuator in open-loop operation[J]. Sensors and Actuators A: Physical, 2005, 122:124-130.
张旋, 潘鸣. 压电双晶片扫描器的低温迟滞蠕变特性[J]. 光学 精密工程. 2013, 20(5):1064-1068. ZHANG X, PAN M. Cryogenic hysteresis and creep characteristic of piezoelectric bimorph scanner[J]. Opt. Precision Eng., 2013, 20(5):1064-1068.(in Chinese)
SONG D, LI C J. Modeling of piezo actuator's nonlinear and frequency dependent dynamics[J]. Mechatronics, 1999, 9:391-410.
JUN H, SHIM J Y, GWEON D. New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep[J]. Review of Scientific Instruments, 2000, 71(9):3436-3440.
RICHTER H, MISAWA EA, LUCCA DA, et al.. Modeling nonlinear behavior in a piezoelectric actuator[J]. Precision Engineering, 2001, 25:128-137.
PÉREZ-ENCISO E, AGRAT N, VIEIRAZ S. Experimental evidence of nonactivated creep in Pb(ZrxTi1-x)O3 ceramics at low temperatures[J]. Physical Review B, 1997, 56(6):R2900-2903.
FETT T, THUN G. Determination of room-temperature tensile creep of PZT[J]. Journal of Materials Science Letters, 1998, 17:1929-1931.
CROFT D, SHED G, DEVASIA S. Creep, Hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application[J]. Journal of Dynamic Systems, Measurement, and Control, 1999, 123: 35-43.
0
浏览量
629
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构