浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 电气工程及自动化学院,黑龙江 哈尔滨,150001
2. 吉林铁道职业技术学院,吉林市 吉林,132001
3. 北京卫星制造厂 北京,100190
收稿日期:2013-12-10,
修回日期:2014-01-17,
纸质出版日期:2014-04-25
移动端阅览
王德元, 张晓琳, 马强等. 多站大尺寸测量仪坐标系转换的Procrustes方法[J]. 光学精密工程, 2014,22(4): 949-955
WANG De-yuan, ZHANG Xiao-lin, MA Qiang etc. Procrustes method in coordinate transformation on multi-station of large scale measurement[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 949-955
王德元, 张晓琳, 马强等. 多站大尺寸测量仪坐标系转换的Procrustes方法[J]. 光学精密工程, 2014,22(4): 949-955 DOI: 10.3788/OPE.20142204.0949.
WANG De-yuan, ZHANG Xiao-lin, MA Qiang etc. Procrustes method in coordinate transformation on multi-station of large scale measurement[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 949-955 DOI: 10.3788/OPE.20142204.0949.
提出了用7参数Procrustes方法建立了具有尺度因子的7参数坐标转换模型对多站大尺寸坐标测量仪坐标数据进行转换。首先,根据大尺寸测量仪坐标转换的原理,建立了7参数大尺寸坐标转换的非线性模型,并具体分析了Procrustes方法及其对坐标转换的适用性和重心法的转换过程。然后,列出了7参数Procrustes坐标转换方法的具体算法步骤;最后,利用该方法对一台Faro激光跟踪仪在移站前后的实际测量数据进行了坐标转换验证。对所得结果与激光跟踪仪配套软件移站的结果以及重心法的测量结果进行了比较,还利用所得的转换参数对一已知长度的基准尺两端坐标值进行转换验证。结果表明:利用7参数Procrustes方法得到坐标转换后
x、y、z
三个轴的最大误差分别为24.5
μ
m、42.5
μ
m和32.8
μ
m,转换结果的中误差为17.1
μ
m,远远高于配套软件以及重心法的转换精度。另外,用转换后的坐标值计算基准尺长度的极差为36
μ
m。该坐标转换方法也可用于不同种类的坐标测量仪的数据匹配。
A 7 parameter Procrustes method with scale factors was proposed and a coordinate conversion model was established to transform coordinate data for a multi-station in large scale coordinate measurement.First
according to the coordinate transformation principle of large-size measuring instrument
the 7 parameter non-linear model in coordinate transformation was established
the Procrustes method and its applicability for coordinate transformation were analyzed and the transformation process of the center method was introduced. Then
the working steps of the 7 parameter Procrustes algorithm were listed. Finally
this method was used to test and verify the measuring data from a Faro laser tracker. The obtained results were compared with those from the laser tracker supporting software in a transfer station and center method and also the conversion parameters were used to transform the coordinates for both ends of a scale bar with a given length. The results show that the maximum error of the 7 parameters method in three axes of
x
y
z
are 24.5
μ
m
42.5
μ
m and 32.8
μ
m and the mean error of this method is 17.1
μ
m
better than that of the supporting software and the center method. Moreover
the error range of the scale bar's length is 36
μ
m in transformed coordinates of this method. The method is also suitable for other coordinate transform instruments to implement data matching.
张春富, 唐文彦, 等. 动态加权在激光跟踪仪球坐标整合中的应用[J]. 哈尔滨工业大学学报, 2007, 39(9):1419-1421. ZHANG CH F, TANG W Y, et al. Application of dynamic weighting in HVD coordinate integrated algorithm[J]. Journal of Harbin Institute of Technology, 2007, 39(9):1419-1421.
张福民, 曲兴华, 叶声华. 大尺寸测量中多传感器的融合[J]. 光学 精密工程, 2008, 16(7):1236-1240. ZHANG F M, QU X H, YE SH H. Multiple sensor fusion in large scale measurement[J]. Opt. Precision Eng., 2008, 16(7):1236-1240.
潘国荣, 张鹏, 孔宁. 造船精度控制系统中用移站测量获取点位信息的一种方法[J]. 大地测量与地球动力学, 2010, 30(5):121-124. PAN G R, ZHANG P, KONG N. A station-moving measurement method for acquring point position information in precision control system for ship building[J]. Journal of Geodesy and Geodynamics, 2010, 30(5):121-124.
ZÁVOTI J, JANCSÓ T. The solution of the 7-Parameter datum transformation problem withand without the grobner basis[J]. Acta Geod. Geoph. Hung., 2006, 41(1):87-100.
WANG Z, MAROPOLOUS P G. Real-time error compensation of a three-axis machine tool using a laser tracker[J]. The International Journal of Advanced Manufacturing Technology, 2013: 1-15.
陈义, 陆珏. 以三维坐标转换为例解算稳健总体最小二乘方法[J]. 测绘学报, 2012, 41(5): 715-722. CHEN Y, LU Y. Performing 3D similarity transformation by robust total least squares[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):715-722.
周维虎, 丁蕾, 等. 光束平差在激光跟踪仪系统精度评定中的应用[J]. 光学 精密工程, 2012, 20(4):851-857. ZHOU W H, DING L, et al. Application of bundle adjustment to accuracy evaluation of laser tracker[J]. Opt. Precision Eng., 2012, 20(4):851-857.
OKWUASHI O, EYOH A. 3D coordinate transformation using total least squares[J]. Academic Research, 2012, 3:399-405.
AWANGE J L, GRAFAREND, et al. Algebraic geodesy and geoinformatics[M]. Springer, 2010.
周拥军, 寇新建. 正交Procrustes分析及其在旋转矩阵估计中的应用[J]. 武汉大学学报·信息科学版, 2009, 34(8):996-999. ZHOU Y J, KOU X J. Orthogonal procrustes analysis and its application on rotation matrix estimation[J]. Geomatics and Information Science of Wuhan University , 2009, 34(8):996-999.
HAN J Y. Noniterative approach for solving the indirect problems of linear reference frame transformations[J]. Journal of Surveying Engineering, 2010, 136(4): 150-156.
PALÁNCZ B, ZALETNYIK P, AWANGE J L, et al. Extension of the ABC-procrustes algorithm for 3D affine coordinate transformation[J]. Earth Planets and Space, 2010, 62(11):857-862.
HAN J Y, SOLER T, GUO J. Utilizing non-iterative linear transformations between non-uniformly dilated 3D frames[J]. Scientific Research and Essays, 2011, 6(31): 6435-6443.
GRAFAREND E W, AWANGE J L. Nonlinear analysis of the three-dimensional datum transformation[J].Journal of Geodesy, 2003, 77(1-2): 66-76.
0
浏览量
534
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构