浏览全部资源
扫码关注微信
1. 哈尔滨工业大学(威海) 土木工程系,山东 威海,264209
2. 哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨,150090
3. 中国建筑股份有限公司技术中心 北京,101300
收稿日期:2013-11-05,
修回日期:2014-01-20,
纸质出版日期:2014-04-25
移动端阅览
钱宏亮, 柳叶, 范峰等. 上海65m射电望远镜非均匀温度场及其效应[J]. 光学精密工程, 2014,22(4): 970-978
QIAN Hong-liang, LIU Ye, FAN Feng etc. Non-uniform temperature field and effects of Shanghai 65 m radio telescope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 970-978
钱宏亮, 柳叶, 范峰等. 上海65m射电望远镜非均匀温度场及其效应[J]. 光学精密工程, 2014,22(4): 970-978 DOI: 10.3788/OPE.20142204.0970.
QIAN Hong-liang, LIU Ye, FAN Feng etc. Non-uniform temperature field and effects of Shanghai 65 m radio telescope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 970-978 DOI: 10.3788/OPE.20142204.0970.
在最不利气候条件下(7月15日)研究了上海65 m射电望远镜的非均匀温度场及其效应,以掌握其主反射面面型精度在不同风速下受非均匀温度场的影响规律。研究了考虑构件尺寸效应的空气对流、天空辐射以及地面辐射等温度场关键影响因素的计算方法,并建立了温度场分析的有限元模型;对3种典型风速下的非均匀温度场进行分析,并将所得到的非均匀温度场施加到主反射面上,研究了不同风速下反射面精度受非均匀温度场的影响规律,即各节点实际坐标拟合抛物面误差均方根(RMS)随时间的变化规律。结果表明:在年平均风速3.2 m/s条件下,射电望远镜结构的RMS最大值为0.44 mm。当风速由1.0 m/s增大到10.0 m/s时,RMS最大值由0.56 mm减小到0.35 mm,且风速越大非均匀温度场对反射面精度的影响越小。该研究成果可为此类望远镜结构的温度场监测、传感器布设、以及热变形控制措施的选取提供参考信息。
The non-uniform temperature field and correspond effects of Shanghai 65 m radio telescope were explored in detail on July 15th (one of the worst-case weather conditions) to understand the effect of non-uniform temperature field on the surface precision of main reflector under different wind speeds. By taking member's specific sizes into consideration
the calculation methods for key factors on temperature fields like convection heat transfer coefficient
sky radiation and ground radiation and so on were researched and an integral parametric thermal finite element model was established using thermal analysis module of ANSYS. The non-uniform temperature field was analyzed under three kinds of typical wind speeds. Temperature field results were loaded on main reflector to investigate the effect of non-uniform temperature field on surface precision caused by different wind speeds
which was assessed by the Root Mean Square(RMS) values of actual coordinates of each node fitting with an ideal parabolic main reflector. The results indicate that RMS led by thermal deformation can be up to 0.44 mm under a local annual average wind speed of 3.2 m/s. When the wind speed rises from 1.0 m/s to 10.0 m/s
the maximum RMS value falls from 0.56 mm to 0.35 mm and the higher the wind speed
the lower the RMS value. Research results can provide effective references for the temperature field monitoring
sensor arrangement and the thermal control selection of the telescopes.
范峰. 上海65m 射电望远镜天线结构分析核查报告[R]. 哈尔滨: 哈尔滨工业大学空间结构研究中心, 2010. FAN F. Mechanical Analysis Report on Shanghai 65 m Radio Telescope Structure[R]. Harbin: Space Structure Research Center of Harbin Institute of Technology, 2010.(in Chinese)
王春圆. 巨型射电望远镜风荷载特性的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2012:80-85. WANG CH Y. Numerical simulation study on characteristics of wind loads of huge radio telescope[D]. Harbin: Harbin Institute of Technology, 2012:80-85 (in Chinese)
钱宏亮, 刘岩, 范峰, 等. 上海65 m射电望远镜太阳辐射作用分析[J]. 工程力学, 2012, 29(10):378-384. QIAN H L, LIU Y, FAN F, et al.. The analysis on solar radiation of Shanghai 65 m radio telescope[J].Engineering Mechanics, 2012, 29(10): 378-384. (in Chinese)
金晓飞. 500m 口径射电望远镜FAST 结构安全及精度控制关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2010:21-48. JIN X F. Study of key issues of the structural safety and accuracy control of the five-hundred-meter aperture radio telescope[D]. Harbin: Harbin Institute of Technology, 2010:21-48. (in Chinese)
金晓飞, 范峰, 沈世钊. 巨型射电望远镜(FAST)反射面支承结构日照温度场效应分析[J]. 土木工程学报, 2008, 41(11): 71-77. JIN X F, FAN F, SHEN SH ZH. Effect of non-uniform temperature field under sunshine on the structure supporting the reflector of a large radio telescope-FAST[J]. China Civil Engineering Journal, 2008, 41(11): 71-77.(in Chinese)
刘国玺, 郑元鹏. 上海65米射电望远镜天线方案设计报告[R]. 石家庄: 中国电子科技集团公司第五十四研究所, 2009. LIU G X, ZHENG Y P. Report on design of Shanghai 65m antenna structure[R]. Shijiazhuang:The 54th Research Institute of CETC, 2009. (in Chinese)
孔祥谦. 有限单元法在热传递学中的应用[M]. 北京:科学出版社, 1998: 57-58. KONG X Q. Application of Finite Element Method on Thermal Transmission [M]. Beijing: Science Press, 1998: 57-58. (in Chinese)
BREMER M, GREVE A. Thermal Design and Thermal Behavior of Radio Telescopes and Their Enclosures[M].Berlin:Springer, 2010:55-159.
BREMER M, GREVE A. A dynamic thermal model for design and control of an 800-element open-air radio telescope.Integrated Modeling of Complex Optomechanical Systems[C]. International Society for Optics and Photonics, 2011:83360U-1-10.
宋立强, 王启明, 郭永卫. 太阳辐照500 m口径球面射电望远镜的温度分布[J]. 光学 精密工程, 2011, 19(5): 951-958. SONG L Q, WANG Q M, GUO Y W. Temperature distribution of FAST under solar radiation[J]. Opt. Precision Eng., 2011, 19(5): 951-958.
赵镇南. 传热学[M]. 北京: 高等教育出版社, 2002:4-5. ZHAO ZH N. Thermal Transmission[M]. Beijing: Higher Education Press, 2002: 4-5. (in Chinese)
李申生. 太阳能物理学[M]. 北京:首都师范大学出版社, 1996: 68-69. LI SH SH. Physics of Solar Energy[M]. Beijing: Capital Normal University Press, 1996: 68-69. (in Chinese)
凯尔别克 F. 太阳辐射对桥梁结构的影响[M]. 刘兴法, 等, 译. 北京: 中国铁道出版社, 1981: 32-33. CALE BUICK F. Effect of Solar Radiation on Bridge Structure[M]. Translated by LIU X F, et al. Beijing:China Railroad Press, 1981: 32-33. (in Chinese)
ELBADRY M M, GHALI A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering, 1983, 109(10):2355-2374.
SIEGEL R, HOWELL, JOHN R. Thermal Radiation Heat Transfer (3rd revised and enlarged edition)[M].Washington: Hemisphere Publishing Corp, 1993:980-1037.
0
浏览量
410
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构