浏览全部资源
扫码关注微信
1. 同济大学 中德工程学院 上海,201804
2. 同济大学 机械与能源工程学院 上海,201804
[ "谢春(1963-),女,吉林长春人,副教授,1989年于长春工业大学获得硕士学位,2013年于同济大学获得博士学位,主要从事机械设计、制造技术及自动化方面的研究。E-mail:xc0522@tongji.edu.cn" ]
[ "张为民(1965-),男,上海人,教授,1987年、1990年和1999年于同济大学分别获得学士、硕士和博士学位,主要从事金属切削机床与加工工艺、制造系统及自动化等教学与科研工作。E-mail:iamt@tongji.edu.cn" ]
收稿日期:2013-09-02,
修回日期:2013-11-01,
纸质出版日期:2014-04-25
移动端阅览
谢春, 张为民,. 车铣复合加工中心综合误差检测及补偿策略[J]. 光学精密工程, 2014,22(4): 1004-1011
XIE Chun, ZHANG Wei-min,. Comprehensive measurement errors of 5-axis turning-milling centers and their compensation strategies[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 1004-1011
谢春, 张为民,. 车铣复合加工中心综合误差检测及补偿策略[J]. 光学精密工程, 2014,22(4): 1004-1011 DOI: 10.3788/OPE.20142204.1004.
XIE Chun, ZHANG Wei-min,. Comprehensive measurement errors of 5-axis turning-milling centers and their compensation strategies[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 1004-1011 DOI: 10.3788/OPE.20142204.1004.
根据五轴车铣复合加工中心的结构及其运动链构型特点,设计了综合误差检测方案。检测包括车主轴床身至铣主轴运动链的空间误差检测以及车主轴的热误差检测两部分。由于检测方案使刀具-工件之间构成了完整的运动链,解决了单纯的空间误差检测方法未考虑车主轴运动链误差影响的问题。文中同时提出了车铣复合加工中心综合误差补偿策略以及运用神经网络算法的几何误差和热误差综合补偿模型。采用分步体对角空间误差检测后,实施了空间误差补偿。补偿后四条体对角线的空间误差都明显减小,减小幅度从15.24
μ
m到50.83
μ
m,误差补偿效果从39.10%提高到78.06%。本文提出的方法极大地改善了空间误差补偿精度。
A comprehensive error measurement plan was designed based on the structure and characters of the kinematic chain for a 5-axis turning-milling combine machine system to compensate errors. The measurement tests include two parts: the volumetric error between turning main spindle frame and milling spindle and the thermal error of turning main spindle. As the plan combined the tool and the working piece to be a complete kinematic chain
the problem of the turning main spindle chain error effect which was not considered in the single space measurement was solved. The comprehensive error compensation model of geometrical errors and thermal errors were also set up based on artificial neural network algorithm and then the volumetric error was compensated after measurement in body diagonals along three axes. The experiments show that the volumetric errors of four body diagonals are obviously decreased with the values from 15.24
μ
m to 50.83
μ
m after compensation and the compensation effects have been improved from 39.10% to 78.06%. The method improves volumetric error compensation accuracy.
BOHEZ E L, ARIYAJUNYA B, SINLAPEECHEEWA C, et al. Systematic geometric rigid body error identification of 5-axis milling machines[J]. Computer-Aided Design, 2007, 39(4):229-244.
XIE CH, ZHANG W M. Structural kinematics and error law research of 5-axis turning-milling complex centers[J]. Advanced Materials Research, 2011, 148-149: 649-652.
李锐钢. 基于激光跟踪仪标定五轴数控加工中心主轴[J]. 光学 精密工程, 2012, 20(3): 477-483. LI R G. Calibration of tool spindle for 5-axis CNC machine using laser tracker[J]. Opt. Precision Eng., 2012, 20(3): 477-483. (in Chinese)
VAN TUTTERVELT C A, PENG J. Symbiosis of modelling and sensing to improve the accuracy of workpieces in small batch machining operations[J].The International Journal of Advanced Manufacturing Technology, 1999, 15(10):699-710.
RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-a review: Part Ⅱ: thermal errors[J]. International Journal of Machine Tools & Manufacture, 2000, 40(9):1257-1284.
LEETE D J. Automatic compensation of alignment errors in machine tools[J]. International Journal of Machine Tool Design and Research, 1961, 1(4):293-324.
FRENCH D, HUMPHRIES S H. Compensation for backlash and alignment errors in a numerically controlled machine tool by a digital computer program[J]. Proceedings of the 8th MTDR Conference, 1967, 8(2): 707-726.
SCHULTSCHIK R. The components of the volumetric accuracy[J]. Annals of CIRP, 1977, 25(1): 223-227.
CHEN J S, YUAN J X, NI J, et al. Real-time compensation of time-variant volumetric errors on a machining center[J]. J.Eng.Ind., 1993, 115(4):472-479.
LIN P D, EHMANN K F. Direct volumetric error evaluation for multi-axis machines[J]. Int. J. of Mach. Tools & Manufacture, 1993, 33(5):675-693.
CHUN X, ZHANG W M. Kinematic error model between milling spindle and bottom turret on turning-milling complex center[C]. Proceedings of the 4th Asia International Symposium on Mechatronics (AISM), 2010: 379-382.
夏毅敏, 张刚强, 罗松保, 等. 非球面超精密机床静压轴承温度场的分布[J]. 光学 精密工程, 2012, 20(8): 1759-1764. XIA Y M, ZHANG G Q, LUO S B, et al. Temperature field distribution of non-spherical hydrostatic bearings for ultra-precision machine tools[J]. Opt. Precision Eng., 2012, 20(8): 1759-1764. (in Chinese)
WEI ZH ZH, ZHANG G J, LI X.The application of machine vision in inspecting position-control accuracy of motor control systems[C]. Proceedings of the Fifth International Conference on Electrical Machines and Systems, Shenyang, P.R. China: ICEMS, 2001, 2:787-790.
IBARAKI S, HATA T. A new formulation of laser step diagonal measurement-Three dimensional case[J]. Precision Engineering, 2010, 34(3):516-525.
WANG C. A definition of volumetric error[J]. Manufacturing Engineering, 2005, 134(1):16-17.
SVOBODA O, BACH P, LIOTTO G, et al. Definitions and correlations of 3D volumetric positioning errors of CNC machining centers. Proceedings of the IMTS 2004 Manufacturing Conference, 2004(9): 1-8.
林伟青, 傅建中, 许亚洲, 等. 基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略[J]. 光学 精密工程, 2008, 16(9): 1682-1686. LIN W Q, FU J ZH, XU Y ZH, et al. Optimal sensor placement for thermal error identification of NC machine tool based on LS-SVM and genetic algorithm[J]. Opt. Precision Eng., 2008, 16(9): 1682-1686. (in Chinese)
苗恩铭, 龚亚运, 成天驹, 等. 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学 精密工程, 2013, 21(4):980-986. MIAO EN M, GONG Y Y, CHENG T J, et al. Application of support vector regression machine to thermal error modeling of machine tools[J]. Opt. Precision Eng., 2013, 21(4):980-986. (in Chinese)
0
浏览量
403
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构