浏览全部资源
扫码关注微信
南阳师范学院 物理与电子工程学院,河南 南阳,473061
收稿日期:2013-07-03,
修回日期:2013-08-10,
纸质出版日期:2014-04-25
移动端阅览
张颖颖, 张帅, 张萍等. 融合对比度和分布性的图像显著性区域检测[J]. 光学精密工程, 2014,22(4): 1012-1019
ZHANG Ying-ying, ZHANG Shuai, ZHANG Ping etc. Detection of salient maps by fusion of contrast and distribution[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 1012-1019
张颖颖, 张帅, 张萍等. 融合对比度和分布性的图像显著性区域检测[J]. 光学精密工程, 2014,22(4): 1012-1019 DOI: 10.3788/OPE.20142204.1012.
ZHANG Ying-ying, ZHANG Shuai, ZHANG Ping etc. Detection of salient maps by fusion of contrast and distribution[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 1012-1019 DOI: 10.3788/OPE.20142204.1012.
单独基于对比度的显著性检测方法由于忽略了特征的空间分布,且只在RGB空间或LAB空间下单独进行计算,故实验结果不理想。本文提出了结合RGB和LAB两种特征空间并融合了对比度和分布性的图像显著性区域检测算法。该算法首先提取图像分块在RGB空间和LAB空间下的原始特征并进行组合,在主成分分析(PCA)降维的基础上自动选择有效特征;然后计算图像分块的对比度和分布性,融合对比度特征和分布性特征实现对原始图像的显著性区域提取。实验结果显示,本文算法的平均准确率为0.821 7,平均召回率为0.692 5,综合指标
F
值达0.787 8。计算的显著性区域的效果比在RGB空间或LAB空间下单独基于对比度的计算方法有明显改善,相比其他检测方法更加准确,符合人眼的观测结果,均匀突出了显著性区域。
The existing saliency detection algorithm can not obtain an ideal result because the contrast based method ignores the specific spatial distribution and calculates only in a RGB space or a LAB space. An algorithm of salient region detection based on the fusion of contrast and distribution under the combination of RGB space and LAB space was proposed. By this method
original image patches in the RGB space and the LAB space were extracted and combined
and the effective features were automatically selected based on Principle Component Analysis(PCA) dimensionality reduction. The contrast and distribution of image patches were calculated in the reduced dimensional space and finally were fused to extract the saliency region. Experimental results show that the precision ratio
the recall ratio and overall
F
-measure of the proposeddetection are 0.821 7
0.692 5 and 0.787 8
respectively. The effect of the proposed algorithm is more improved than the two algorithms based on the contrast in the RGB space or the LAB space alone. This method is more accurate and is more in line with the human eye observation results
uniformly highlighting the whole salient areas.
TEUBER H. Physiological psychology[J]. Annual Review of Psychology, 1955, 6(1):267-296.
MANNAN S K, KENNARD C, HUSAIN M. The role of visual salience in directing eye movements in visual object agnosia[J]. Current Biology, 2009, 19(6):247-248.
TRIESMAN A M, GELADE G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980, 2(1):97-136.
KOCH C, ULLMAN S. Shifts in selective visual attention:towards the underlying neural circuitry[J]. Human Neurbiology, 1985, 4(4):219-227.
ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.
刘琼, 秦世引. 视觉选择性注意模型化计算中的特征整合权值估计与图像显著性区域提取[J]. 模式识别与人工智能, 2011, 24(4):548-554. LIU Q, QIN SH Y. Weight estimation for feature integration and saliency region extraction in modeling computation of visual selective attention[J].Pattern Recognition and Artificial Intelligence, 2011, 24(4):548-554.(in Chinese)
ZHAI Y, SHAH M. Visual attention detection in video sequences using spatiotemporal cues[C]. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, New York, USA, 2006, 815-824.
CHENG M M, ZHANG G X, MITRA N J, et al. Global contrast based salient region detection[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA:IEEE, 2011, 409-416.
AZIZ M Z, MERTSEHING B. Fast and robust generation of feature maps for region-based visual attention[J]. IEEE Transactions on Image Processing, 2008, 17(5):633-644.
LIU T, SUN J, ZHANG N, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2):353-367.
DUAN L, WU C, MIAO J, et al. Visual saliency detection by spatially weighted dissimilarity[C]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011, 473-480.
赵宏伟, 陈霄, 刘萍萍, 等. 视觉显著目标的自适应分割[J]. 光学 精密工程, 2013, 21(2):531-538. ZHAO H W, CHEN X, LIU P P, et al. Adaptive segmentation for visual salient object[J].Opt. Precision Eng., 2013, 21(2):531-538.(in Chinese)
HOU X D, ZHANG L Q. Saliency detection: a spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007, CVPR'07, Minneapolis, USA, 2007, 1-8.
GUO C L, MA Q, ZHANG L M. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA:2008, 1-8.
李崇飞, 曲智国, 卢凯, 等. 基于侧抑制频谱调谐的显著性检测方法[J]. 计算机科学, 2011, 38(12):258-262. LI CH F, QU ZH G, LU K, et al.Saliency detetion method based on spectrum tuning using lateral inhibition[J].Computer Science, 2011, 38(12):258-262.(in Chinese)
余映, 王斌, 张立明. 基于脉冲余弦变换的选择性视觉注意模型[J]. 模式识别与人工智能, 2010, 23(10):616-623. YU Y, WANG B, ZHANG L M. Selective visual attention model based on pulsed cosine transform[J].Pattern Recognition and Artificial Intelligence, 2010, 23(10):616-623.(in Chinese)
王丽荣, 王建蕾. 基于主成分分析的唇部轮廓建模[J]. 光学 精密工程, 2012, 20(12):2768-2772. WANG L R, WANG J L. Lip contour modeling based on PCA[J].Opt. Precision Eng., 2012, 20(12):2768-2772. (in Chinese)
ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, Florida, 2009, 1579-1604.
MA Y F, ZHANG H J. Contrast-based image attention analysis by using fuzzy growing[C]. Multimedia'03 Proceedings of the 11th ACM International Conference on Multimedia, New York, USA, 2003, 374-381.
ACHANTA R, ESTRADA F, WILS P, et al. Salient region detection and segmentation[C]. Proceedings of the 6th International Conference on Computer Vision Systems, Berlin, Heidelberg, Springer-Verlag, 2008, 5008: 66-75.
GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926.
HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]. Proceedings of the Neural Information Processing Systems, Vancouver, Canada, 2006, 545-552.
罗菁, 林树忠, 詹湘琳, 等. 基于2DPCA和EBFNN的指纹识别方法[J]. 光学 精密工程, 2008, 16(9):1773-1780. LUO J, LIN SH ZH, ZHAN X L, et al. A novel fingerprint recognition algorithm based on 2DPCA and EBFNN[J].Opt. Precision Eng., 2008, 16(9):1773-1780. (in Chinese)
0
浏览量
301
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构