浏览全部资源
扫码关注微信
1. 江苏师范大学 电气工程及自动化学院,江苏 徐州,221116
2. 沈阳建筑大学 信息与控制工程学院,辽宁 沈阳,110168
收稿日期:2013-05-24,
修回日期:2013-07-16,
纸质出版日期:2014-04-25
移动端阅览
邹德旋, 王鑫, 陈传虎等. 基于改进粒子群的虹膜定位算法[J]. 光学精密工程, 2014,22(4): 1056-1063
ZOU De-xuan, WANG Xin, CHEN Chuan-hu etc. Iris location algorithm based on improved particle swarm optimization[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 1056-1063
邹德旋, 王鑫, 陈传虎等. 基于改进粒子群的虹膜定位算法[J]. 光学精密工程, 2014,22(4): 1056-1063 DOI: 10.3788/OPE.20142204.1056.
ZOU De-xuan, WANG Xin, CHEN Chuan-hu etc. Iris location algorithm based on improved particle swarm optimization[J]. Editorial Office of Optics and Precision Engineering, 2014,22(4): 1056-1063 DOI: 10.3788/OPE.20142204.1056.
提出了一种改进的粒子群优化算法(IPSO)来解决虹膜定位问题。该算法采用两种速度更新策略来增强种群多样性并提高算法自身的收敛速度,并提出一种变异操作以阻止IPSO陷入局部最优。对虹膜内进行边缘定位时,通过搜索6条直线与虹膜内边缘的交点来获得12个边缘点;另外建立了与这12个点有关的目标函数,并用IPSO来优化该函数。根据IPSO在该函数上的应用,找到一个最合适的圆来拟合虹膜内边缘。进行虹膜外定位时,设计了一个模板来提取虹膜外边界,然后从外边界中选择12个边缘点,并同样使用IPSO找到一个最合适的圆来拟合虹膜外边缘。为了验证基于改进粒子群优化算法的虹膜定位方法(ILA-IPSO)的性能,从中国科学院自动化研究所的数据库中选择了不同个体的108幅虹膜图像。实验结果表明,ILA-IPSO算法要好于其它两种方法,该算法利用最少的定位时间获得了最高的成功率。
An Improved Particle Swarm Optimization (IPSO) algorithm was proposed to solve iris localization. The IPSO adopted two velocity updating strategies to diversify the swarm and to improve its convergence rate. In addition
a mutation operation was used to prevent the IPSO from being trapped into the local optimums. For inner location
twelve edge points were determined by finding the intersection points of six straight lines with the inner boundary. A function related to these twelve points was constructed
and this function was optimized by IPSO. By applying IPSO to this function
a most suitable circle could be found to fit the inner boundary of the iris. With respect to outer location
a template was designed to extract the outer boundary of the iris
and twelve edge points were equally selected from the outer boundary of the iris. By applying IPSO to a function related to these twelve points
a most appropriate circle could be obtained to fit the outer boundary of the iris. 108 iris images of different individuals were chosen from the eye image database of Institute of Automation of Chinese Academy of Sciences (CASIA) to test the performance of our proposed Iris Location Algorithm based on Improved Particle Swarm Optimization (ILA-IPSO) algorithm. Experimental results reveal that the ILA-IPSO performs better than the other two approaches for iris localization. This method uses the least time of iris localization
and obtains the highest success rate.
BOWYER K W, HOLLINGSWORTH K, FLYNN P J. Image understanding for iris biometrics: A survey[J]. Computer Vision and Image Understanding, 2008, 110(2): 281-307.
陈传虎, 邹德旋, 刘海宽. 应用统计距离实现虹膜定位[J]. 光学 精密工程, 2012, 20(11): 2516-2522. CHEN CH H, ZOU D X, LIU H K. Iris location algorithm by counting distances[J]. Opt. Precision Eng., 2012, 20(11): 2516-2522.(in Chinese)
XU G Z, ZHANG Z F, MA Y D. An image segmentation based method for iris feature extraction[J]. The Journal of China Universities of Posts and Telecommunications, 2008, 15(1): 96-101, 117.
DONG W B, SUN ZH N, TAN T N. Iris matching based on personalized weight map[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1744-1757.
DAUGMAN J G. How iris recognition works[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 21-30.
WILDES R. Iris recognition: an emerging biometric technology. Proceedings of the IEEE, 1997, 85(9): 1348-1363.
HUANG J, YOU X G, TANG Y Y, et al. A novel iris segmentation using radial-suppression edge detection[J]. Signal Processing, 2009, 89(12): 2630-2643.
BASIT A, JAVED M Y. Localization of iris in gray scale images using intensity gradient[J]. Optics and Lasers in Engineering, 2007, 45(12): 1107-1114.
PUNDLIK S, WOODARD D, BIRCHFIELD S. Iris segmentation in non-ideal images using graph cuts[J]. Image and Vision Computing, 2010, 28(12): 1671-1681.
吴建华, 邹德旋, 李静辉. 基于小范围搜索的虹膜定位方法[J]. 仪器仪表学报, 2008, 29 (8): 1704-1708. WU J H, ZOU D X, LI J H. Iris location algorithm based on small-scale searching[J]. Chinese Journal of Scientific Instrument, 2008, 29(8): 1704-1708.(in Chinese)
KENNEDY J, EBERHART R C. Particle swarm optimization. Proc. IEEE International Conference on Neural Networks, 1995, 1942-1948.
葛宝臻, 马云峰, 魏耀林. 求解粒子群粒度分布的改进Projection算法[J]. 光学 精密工程, 2012, 20(1):197-203. GE B ZH, MA Y F, WEI Y L. Improved projection algorithm for measuring distribution of particle sizes[J]. Opt. Precision Eng., 2012, 20(1): 197-203.(in Chinese)
NAVALERTPORN T, AFZULPURKAR N V. Optimization of tile manufacturing process using particle swarm optimization[J]. Swarm and Evolutionary Computation, 2011, 1(2): 97-109.
KHARE A, RANGNEKAR S. A review of particle swarm optimization and its applications in Solar Photovoltaic system[J]. Applied Soft Computing, 2013, 13(5): 2997-3006.
PEREZ R E, BEHDINAN K. Particle swarm approach for structural design optimization[J]. Computers & Structures, 2007, 85(19-20):1579-1588.
吴建华, 邹德旋, 李静辉. 一种快速精确的虹膜定位方法[J]. 仪器仪表学报, 2007, 28 (8): 1469-1473. WU J H, ZOU D X, LI J H. Fast and accurate iris location algorithm[J]. Chinese Journal of Scientific Instrument, 2007, 28(8): 1469-1473.(in Chinese)
CANNY J A. Computional approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
CASIA Iris Image Database, Version 1.0. http://www.sinobiometrics.com/casiairis.htm.
0
浏览量
382
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构