浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 中国科学院 苏州生物医学工程技术研究所,江苏 苏州,中国,215163
收稿日期:2013-03-21,
修回日期:2013-04-11,
纸质出版日期:2014-05-25
移动端阅览
魏通达, 张运海, 唐玉国. 偏振态、相位和振幅对受激辐射损耗中损耗光焦斑的影响[J]. 光学精密工程, 2014,22(5): 1157-1164
WEI Tong-da, ZHANG Yun-hai, TANG Yu-guo. Effect of polarization, phase and amplitude on depletion focus spot in STED[J]. Editorial Office of Optics and Precision Engineering, 2014,22(5): 1157-1164
魏通达, 张运海, 唐玉国. 偏振态、相位和振幅对受激辐射损耗中损耗光焦斑的影响[J]. 光学精密工程, 2014,22(5): 1157-1164 DOI: 10.3788/OPE.20142205.1157.
WEI Tong-da, ZHANG Yun-hai, TANG Yu-guo. Effect of polarization, phase and amplitude on depletion focus spot in STED[J]. Editorial Office of Optics and Precision Engineering, 2014,22(5): 1157-1164 DOI: 10.3788/OPE.20142205.1157.
针对受激辐射损耗(STED)超分辨显微术分辨率不够高的问题,研究了损耗光偏振态、相位和振幅多种物理量对焦斑的影响,以形成半峰全宽窄的圆环形损耗光焦斑。根据Richards-Wolf矢量衍射理论,建立了偏振态、相位和偏振态作用下的损耗光焦斑模型;计算了不同偏振态、不同相位振幅调制参数下损耗光焦斑的分布情况;通过优化各参量得到有效激发荧光的分布。计算结果表明,应用切向偏振时的损耗光焦斑半峰全宽优于应用径向偏振和圆偏振;相位和振幅的调制作用均能减小半峰全宽;优化后有效激发荧光的理论半峰全宽仅为13.2nm。采用损耗光的偏振态、相位和振幅对损耗光焦斑进行整形,能够有效减小半峰全宽,获得较高的理论分辨率,比仅使用单一物理量的效果更好;应用切向偏振光能够获得高质量的损耗光焦斑和超衍射极限的分辨能力,根据不同实际情况选择相位或振幅调制的方法可进一步提高分辨率。
As Stimulated Emission Depletion (STED) super-resolution microscopy has a lower resolution
this paper explores the effects of multiphysical variables including light polarization
phases and amplitudes on the focal spots
in order to form a ring-shape depletion focus spot with sharper Full Width at Half Maximum(FWHM) and to increase the resolution of the microscopy.According to Richards-Wolf vector theory
the models of depletion focus spots were established under the actions of polarization
phase and amplitude
the focus spot distribution was calculated in different polarization
phase and amplitude conditions and the distribution of effective fluorescent excitation was obtained by optimizing the parameters.The results show that: by using azimuthal polarization light as depletion
the FWHM is better than those of radial or circular ones; modulations of phase and amplitude are able to reduce the FWHM
and the theoretical value of effective fluorescent excitation FWHM is only 13.2 nm after optimization.By using polarization state
phase and amplitude to modulate the depletion focus spot
the FWHM can be reduced and a higher resolution can be obtained
which is more effective than that using only single physical variable.Moreover
the high quality depletion focus spot and super-resolution ability can be obtained with azimuthal polarization light in STED and the resolution can further be optimized by phase or amplitude modulations based on different realities.
SCHERMELLEH L, HEINTZMANN R, LEONHARDT H.A guide to super-resolution fluorescence microscopy [J].Journal of Cell Biology, 2010, 190(2):165-175.
VAND DE LINDE S, ENDESFELDER U, MUK-HERJEE A, et al..Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging [J].Photochemical & Photobiological Sciences, 2009, 8(4):465-469.
BADDELEY D, CHAGIN V O, SCHERMELLEH L, et al..Measurement of replication structures at the nanometer scale using super-resolution light microscopy [J].Nucleic.Acids Research, 2010, 38(2):8.
BETZIG E, PATTERSON G H, SOUGRAT R, et al..Imaging intracellular fluorescent proteins at nanometer resolution [J].Science, 2006, 313(5793):1642-1645.
RUST M J, BATES M, ZHUANG X W.Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J].Nature Methods, 2006, 3(10):793-795.
HELL S W, WICHMANN J.Breaking the diffraction resolution limit by sitmulated-emmission-deplettion fluorescence microscopy [J].Optics Letters, 1994, 19(11):780-782.
ZHANG Y H, HU B, DAI Y K,et al..A new multichannel spectral imaging laser scanning confocal microscope [J].Computational and Mathematical Methods in Medicine, 2013, 2013:8.
RITTWEGER E, HAN K Y, IRVINE S E, et al..STED microscopy reveals crystal colour centres with nanometric resolution [J].Nature Photonics, 2009, 3(3):144-147.
GALIANI S, HARKE B, VICIDOMINI G, et al..Strategies to maximize the performance of a STED microscope [J].Optics Express, 2012, 20(7):7362-7374.
KROMANN E B, GOULD T J, JUETTE M F, et al..Quantitative pupil analysis in stimulated emission depletion microscopy using phase retrieval [J].Optics Letters, 2012, 37(11):1805-1807.
BOKOR N, IKETAKI Y, WATANABE T, et al..On polarization effects in fluorescence depletion microscopy [J].Optics Communications, 2007, 272(1):263-268.
KHONINA S N, GOLUB I.How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy [J].Journal of the Optical Society of America a-Optics Image Science and Vision, 2012, 29(10):2242-2246.
KHONINA S N, GOLUB I.Enlightening darkness to diffraction limit and beyond:comparison and optimization of different polarizations for dark spot generation [J].Journal of the Optical Society of America a-Optics Image Science and Vision, 2012, 29(7):1470-1474.
XUE Y, KUANG C F, LI S, et al..Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy [J].Optics Express, 2012, 20(16):17653-17666.
宋建中. 图像处理智能化的发展趋势[J]. 中国光学, 2011, 4(5):431-440. SONG J ZH.Development trend of image processing intelligence [J].Chinese Optics, 2011, 4(5):431-440.(in Chinese)
RICHARDS B, WOLF E.Elecromagnetic diffraction in optical systems II.Structure of the image filed in an aplanatic system [J].Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1959, 253(1274):358-379.
TOROK P, MUNRO P R T.The use of Gauss-Laguerre vector beams in STED microscopy [J].Optics Express, 2004, 12(15):3605-3617.
XUE Y, KUANG C F, HAO X, et al..A method for generating a three-dimensional dark spot using a radially polarized beam [J].Journal of Optics, 2011, 13(12):125704.
林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学, 2012, 5(4):337-351. LIN X D, XUE CH, LIU X Y, et al..Current status and research development of wave front correctors for adaptive optics [J].Chinese Optics, 2012, 5(4):337-351.(in Chinese)
芦永军, 曹召良, 曲艳玲, 等. 液晶波前校正器动态位相响应特性研究[J]. 液晶与显示, 2012, 27(6):730-735. LU Y J, CAO ZH L, QU Y L, et al..Dynamic phase response of liquid crystal wave front corrector [J].Chinese Journal of Liquid Crystal and Displays, 2012, 27(6):730-735.(in Chinese)
0
浏览量
302
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构