浏览全部资源
扫码关注微信
1. 复旦大学 电子工程系 上海,200433
2. 云南大学 电子工程系,云南 昆明,650091
3. 复旦大学 附属华东医院 超声科 上海,200040
收稿日期:2013-08-30,
修回日期:2013-10-15,
纸质出版日期:2014-05-25
移动端阅览
吴俊, 汪源源, 陈悦等. 基于同质区域自动选取的各向异性扩散超声图像去噪[J]. 光学精密工程, 2014,22(5): 1312-1321
WU Jun, WANG Yuan-yuan, CHEN Yue etc. Speckle reduction of ultrasound images with anisotropic diffusion based on homogeneous region automatic selection[J]. Editorial Office of Optics and Precision Engineering, 2014,22(5): 1312-1321
吴俊, 汪源源, 陈悦等. 基于同质区域自动选取的各向异性扩散超声图像去噪[J]. 光学精密工程, 2014,22(5): 1312-1321 DOI: 10.3788/OPE.20142205.1312.
WU Jun, WANG Yuan-yuan, CHEN Yue etc. Speckle reduction of ultrasound images with anisotropic diffusion based on homogeneous region automatic selection[J]. Editorial Office of Optics and Precision Engineering, 2014,22(5): 1312-1321 DOI: 10.3788/OPE.20142205.1312.
提出一种自适应选取各向异性扩散滤波器扩散参数的方法,以提高滤波器的有效性和稳定性。首先,使用最大类间方差二值化算法确定超声图像的最优二值化阈值,并将该阈值作为区域均匀性标准对超声图像进行四叉树分解。然后,按从大到小的顺序从分解结果中取出所有当前最大分块,根据最优同质区域分块判决依据进行优选。最后,使用最优同质区域选取结果计算扩散参数,对超声图像进行各向异性扩散滤波。结果表明,本方法优于斑点降噪各向异性扩散(SRAD)和细节保留各向异性扩散(DPAD)两种典型的自动选取扩散参数方法,能在显著减少运算时间的同时使平均图像佳数较前两种方法分别提高0.029和0.129。本方法避免了对人工同质区域选取的依赖,可准确计算扩散参数,在噪声消除和边缘保护上达到有效的平衡,是一种有效的超声图像降噪方法。
An adaptive selection method of diffusion threshold was proposed to improve the effectiveness and stability of a filter in speckle reduction of ultrasound images.An optimal threshold of the ultrasound image was determined by the Otsu binarization algorithm.Then
the ultrasound image was divided into blocks by Quad tree decomposition using the optimal threshold as the criterion of homogeneity.In descending order of the size
the present maximal blocks were picked up from the Quad tree decomposition result
and an optimal homogeneous region of the ultrasound image was selected by the proposed selection criteria.Finally
the diffusion threshold was obtained by analyzing statistical features of the optimal homogeneous region
and the ultrasound image was filtered using this diffusion threshold.The results demonstrate that the proposed method has better performance comparing with the Speckle Reducing Anisotropic Diffusion (SRAD)method and the Detail Preserving Anisotropic Diffusion (DPAD) method.It reduces the operation time effectively
and the average figure-of-merit by using the proposed method is 0.029
0.129 higher than those by using other two mentioned methods.The proposed method avoids the manual selection of homogeneous area and can estimate the diffusion threshold accurately
which can reduce the speckles effectively while preserving the edges.
汪源源, 焦静. 改进型脉冲耦合神经网络检测乳腺肿瘤超声图像感兴趣区域[J]. 光学 精密工程, 2011, 19(6):1398-1405. WANG Y Y, JIAO J.Detection of regions of interest from breast tumor ultrasound images using improved PCNN [J].Opt.Precision Eng.,2011, 19(6):1398-1405.(in Chinese)
余锦华, 汪源源. 基于各向异性扩散的图像降噪算法综述[J]. 电子测量与仪器学报, 2011, 25(2):105-116. YU J H,WANG Y Y.Image noise reduction based on anisotropic diffusion:A survey [J].Journal of Electronic Measurement and Instrument,2011,25(2):105-116.(in Chinese)
李云红,伊欣. 基于脉冲耦合神经网络模型的小波自适应斑点噪声滤除算法[J]. 光学 精密工程, 2012, 20(9):2060-2067. LI Y H,YI X.Wavelet adaptive denoising method based on PCNN [J].Opt.Precision Eng.,2012, 20(9):2060-2067.(in Chinese)
PERONA P, MALIK J.Scale space and edge detection using anisotropic diffusion [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639.
任文琦,王元全. 基于梯度矢量卷积场的四阶各向异性扩散及图像去噪[J]. 光学 精密工程, 2013, 21(10):2713-2719. REN W Q,WANG Y Q.GVC-based fourth-order anisotropic diffusion for image denoising [J].Opt.Precision Eng.,2013, 21(10):2713-2719.(in Chinese)
YU Y J, ACTON S T.Speckle reducing anisotropic diffusion [J].IEEE Transactions on Image Processing, 2002, 11(11):1260-1270.
张麒, 汪源源, 王威琪, 等. 基于活动轮廓模型和Contourlet多分辨率分析分割血管内超声图像[J]. 光学 精密工程, 2008, 16(11):2303-2312. ZHANG Q, WANG Y Y, WANG W Q, et al..Intravascular ultrasound image segmentation based on active Contour model and Contourlet multiresolution analysis [J].Opt.Precision Eng., 2008, 16(11):2303-2312.(in Chinese)
张麒, 汪源源, 马剑英, 等. 基于血管内超声图像自动识别易损斑块[J]. 光学 精密工程, 2011, 19(10):2507-2519. ZHANG Q, WANG Y Y, MA J Y, et al..Automatic identification of vulnerable plaques based on intravascular ultrasound images [J].Opt.Precision Eng. , 2011, 19(10):2507-2519.(in Chinese)
SANTIAGO A F, CARLOS A L.On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering [J].IEEE Transactions on Image Processing, 2006, 15(9):2694-2701.
YU Y J, ACTON S T.Edge detection in ultrasound imagery using the instantaneous coefficient of variation [J].IEEE Transactions on Image Processing, 2004, 13(12):1640-1655.
SANTIAGO A F, GONZALO V S F, MARCOS M F, et al..Automatic noise estimation in images using local statistics.Additive and multiplicative cases [J].Image and Vision Computing, 2009, 27(6):756-770.
SUN Q L, HOSSACK J A, TANG J S, et al..Speckle reducing anisotropic diffusion for 3D ultrasound images [J].Computerized Medical Imaging and Graphics, 2004, 28(8):461-470.
SAMET H.The quadtree and related hierarchical data structures [J].ACM Computing Surveys, 1984, 16(2):187-260.
JAGADEESH P,NAGABHUSHAN P,PRADEEP K R.A novel image scrambling technique based on information entropy and quad tree decomposition [J].IJCSI International Journal of Computer Science Issues,2013,10(1):285-294.
OTSU N.A threshold selection method from gray-level histograms [J].IEEE Transactions on Systems, Man, and Cybernetics, 1979, SMC-9(1):62-66.
PIEDERRIERE Y, MEUR J L, CARIOU J,et al..Particle aggregation monitoring by speckle size measurement;application to blood platelets aggregation [J].Optics Express, 2004, 12(19):4596-4601.
ZHANG G, WU ZH S, LI Y H.Speckle size of light scattered from 3D rough objects [J].Optics Express, 2012, 20(4):4726-4737.
CANNY J.A computational approach to edge detection [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-698.
0
浏览量
658
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构