浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
[ "李姜(1982- ),男,吉林白城人,博士,助理研究员,2005年于吉林大学获得学士学位,主要从事光电对抗系统研究。E-mail:cclijiang@163.com" ]
[ "郭立红(1964- ),女,研究员,博士生导师,主要从事光电对抗装备总体设计。Email:guolh@ciomp.ac.cn" ]
收稿日期:2013-01-03,
修回日期:2013-03-03,
纸质出版日期:2014-05-25
移动端阅览
李姜, 郭立红,. 基于改进支持向量机的目标威胁估计[J]. 光学精密工程, 2014,22(5): 1354-1362
LI Jiang, GUO Li-hong,. Target threat assessment using improved SVM[J]. Editorial Office of Optics and Precision Engineering, 2014,22(5): 1354-1362
李姜, 郭立红,. 基于改进支持向量机的目标威胁估计[J]. 光学精密工程, 2014,22(5): 1354-1362 DOI: 10.3788/OPE.20142205.1354.
LI Jiang, GUO Li-hong,. Target threat assessment using improved SVM[J]. Editorial Office of Optics and Precision Engineering, 2014,22(5): 1354-1362 DOI: 10.3788/OPE.20142205.1354.
针对信息融合中目标威胁估计的特点,分析了传统目标威胁估计方法和支持向量机(SVM)的不足。采用粒子群算法(PSO)对SVM中惩罚参数
c
和核函数
g
进行优化,建立了改进的SVM(PSO_SVM)目标威胁估计模型及算法。介绍了粒子群算法和支持向量机的原理,建立了一种新的PSO_SVM目标威胁估计模型;基于该模型,实现了PSO_SVM目标威胁估计算法。为适应该算法,对数据进行了预处理,包括数据量化和归一化。交叉验证寻找最佳参数时,采用PSO算法进行优化。采集75组原始数据用于仿真实验,其中60组作为训练集,15组作为测试集。仿真实验表明,该算法预测误差为0,达到了预期目标。实验结果真实、准确地反映了实际情况,证明了该方法的有效性。
On the basis of the characteristics of target threat assessment in information fusion
the weaknesses of traditional methods for target threat assessment and Support Vector Machine (SVM) were analyzed. By using the Particle Swarm Optimization (PSO) to optimize the penalty parameter
c
and core function
g
in the SVM
a new target threat assessment model (PSO_SVM) was established and the PSO_SVM algorithm was achieved based on the model. To satisfy the requirements of PSO_SVM algorithm
data was preprocessed
including quantification and normalization. When cross-validation method was used to find the best parameters
the POD was used for network training. 75 group data were used in simulation experiments
among them 60 group data were train sets and the others were test sets. Experimental results show that the error of the PSO_SVM method is 0
reaching the desired goal
which proves the accuracy and efficiency of the proposed method.
王晓帆, 王宝树. 基于直觉模糊与计划识别的威胁评估方法[J]. 计算机科学, 2010, 37(5):175-177. WANG X F, WANG B SH.Techniques for threat assessment based on intuitionistic fuzzy theory and plan recognition [J].Computer Science, 2010, 37(5):175-177.(in Chinese)
杨健, 高文逸, 刘军. 一种基于贝叶斯网络的威胁评估方法 [J]. 解放军理工大学学报:自然科学版, 2010, 11(1):43-48. YANG J, GAO W Y, LIU J.Threat assessment method based on Bayesian network [J].Journal of PLA University of Science and Technology:Natural Edition,2010, 11(1):43-48.(in Chinese)
姚磊, 王红明, 郑锋, 等. 空中目标威胁估计的模糊聚类方法研究[J]. 武汉理工大学学报:交通科学与工程版, 2010, 34(6):1159-1162. YAO L, WANG H M, ZHENG F, et al..Study fuzzy clustering method of air target threat assessment [J].Journal of Wuhan University of Technology:Transportation Science & Engineering,2010, 34(6):1159-1162.(in Chinese)
王改革, 郭立红, 段红, 等. 基于Elman_AdaBoost强预测器的目标威胁评估模型及算法[J]. 电子学报, 2012, 40 (5):901-906. WANG G G, GUO L H, DUAN H, et al..The model and algorithm for the target threat assessment based on Elman_AdaBoost strong predictor [J].Acta Electronica Sinica, 2012, 40 (5):901-906.(in Chinese)
罗艳春, 郭立红, 李念峰, 等. 粗集理论在空中目标威胁等级判断中的应用[J]. 计算机工程与应用, 2009, 45(10):231-234. LUO Y CH, GUO L H, LI N F, et al..Application of rough set theory in threat degree estimation of aerial target [J].Computer Engineering and Applications, 2009, 45(10):231-234.(in Chinese)
谷向东, 童中翔, 柴世杰, 等. 基于IAHP和离差最大化TOPSIS法目标威胁评估[J]. 空军工程大学学报:自然科学版, 2011, 12(2):27-31. GU X D, TONG ZH X, CHAI SH J, et al..Target threat assessment based on TOPSIS combined by IAHP and the maximal deviation[J].Journal of Air Force Engineering University:Natural Science Edition,2011, 12(2):27-31.(in Chinese)
王改革, 郭立红, 段红, 等. 基于萤火虫算法优化BP神经网络的目标威胁评估[J]. 吉林大学学报:工学版, 2013,43(4):1064-1069. WANG G G, GUO L H, DUAN H, et al..Target threat assessment using glowworm swarm optimization and BP neural network [J].Journal of Jilin University:Engineering and Technology Edition, 2013,43(4):1064-1069.(in Chinese)
彭方明, 邢清华, 王三涛. 基于Vague集TOPSIS法的空中目标威胁评估[J]. 电光与控制, 2010, 17(10):23-27. PENG F M, XING Q H, WANG S T.Threat assessment of aerial targets based on TOPSIS method and Vague set theory [J].Electronics Optics & Control, 2010, 17(10):23-27.(in Chinese)
刘顺利, 陈亚生, 陈琳. 基于Agent的空中目标威胁度评估模型[J]. 弹箭与制导学报, 2010, 30(6):212-216. LIU SH L, CHEN Y SH, CHEN L.Model for aerial threat evaluation based on Agent [J].Journal of Projectiles, Rockets, Missiles and Guides, 2010, 30(6):212-216.(in Chinese)
WANG G G, GUO L H, DUAN H.Wavelet neural network using multiple wavelet functions in target threat assessment[J].The Scientific World Journal, 2013, 2013:1-7.
宋建中. 图像处理智能化的发展趋势[J]. 中国光学, 2011, 4 (5):431-440. SONG J ZH.Development of image processing intelligence [J].Chinese Optics, 2011, 4 (5):431-440.(in Chinese)
韩广良. 高频信息矢量匹配实现异源图像配准[J]. 中国光学, 2011, 4 (5):468-473. HAN G L.Alignment between different source images by high frequency vector matching [J].Chinese Optics, 2011, 4 (5):468-473.(in Chinese)
陈小林, 王延杰. 非下采样变换的红外与可见光图像融合[J]. 中国光学, 2011, 4 (5):489-496. CHEN X L, WANG Y J.infrared and visible image fusion based on nonsubsampled contourlet transform [J].Chinese Optics, 2011, 4 (5):489-496.(in Chinese)
朱福珍, 李金宗, 朱兵, 等. 基于径向基函数神经网络的超分辨率图像重建[J]. 光学 精密工程, 2010, 18(6):1444-1451. ZHU F ZH, LI J Z, ZHU B, et al..Super-resolution image reconstruction based on RBF neural network [J].Opt.Precision Eng., 2010, 18(6):1444-1451.(in Chinese)
汪源源, 焦静. 改进型脉冲耦合神经网络检测乳腺肿瘤超声图像感兴趣区域[J]. 光学 精密工程, 2011, 19(6):1398-1405. WANG Y Y, JIAO J.Detection of region of interest from breast tumor ultrasound images using improved PCNN[J].Opt.Precision Eng., 2011, 19(6):1398-1405..(in Chinese)
陈向坚, 李迪, 白越, 等. 模糊神经网络在自适应双轴运动控制系统中的应用[J]. 光学 精密工程, 2011, 19(7):1643-1650. CHEN X J, LI D, BAI Y, et al..Application of type-II fuzzy neural network to adaptive double axis motion control system [J].Opt.Precision Eng., 2011, 19(7):1643-1650.(in Chinese)
耿洁, 刘向东, 陈振, 等. Preisach迟滞逆模型的神经网络分类排序[J]. 光学 精密工程, 2010, 18(4):855-862. GENG J, LIU X D, CHEN ZH, et al..Realization of sorting & taxis of Preisach inverse hysteresis model using neural network [J].Opt.Precision Eng., 2010, 18(4):855-862.(in Chinese)
许廷发, 赵思宏, 周生兵, 等. DSP并行系统的并行粒子群优化目标跟踪[J]. 光学 精密工程, 2009, 17(9):2236-2240. XU T F, ZHAO S H, ZHOU SH B, et al..Particle swarm optimizer tracking based on DSP parallel system [J].Opt.Precision Eng., 2010, 17(9):2236-2240.(in Chinese)
高贯斌, 王文, 林铿, 等. 圆光栅角度传感器的误差补偿及参数辨识[J]. 光学 精密工程, 2010, 18(8):1766-1772. GAO G B, WANG W, LIN K, et al..Error compensation and parameter identification of circular grating angle sensors [J].Opt.Precision Eng., 2010, 18(8):1766-1772.(in Chinese)
张晓平, 刘桂雄, 周松斌. 利用最小二乘支持向量机实现无线传感器网络的目标定位[J]. 光学 精密工程, 2010, 18(9):2060-2068. ZHANG X P, LIU G X, ZHOU S B.Target localization based on LSSVR in wireless sensor networks [J].Opt.Precision Eng., 2010, 18(9):2060-2068.(in Chinese)
黄吉东, 王龙山, 李国发, 等. 基于最小二乘支持向量机的外圆磨削表面粗糙度预测系统[J]. 光学 精密工程, 2010, 18(11):88-93. HUANG J D, WANG L SH, LI G F, et al..Prediction system of surface roughness based on LS-SVM in cylindrical longitudinal grinding [J].Opt.Precision Eng., 2010, 18(11):88-93.(in Chinese)
高恒振, 万建伟, 粘永健, 等. 组合核函数支持向量机高光谱图像融合分类[J]. 光学 精密工程, 2011, 19(4):878-883. GAO H ZH, WAN J W, NIAN Y J, et al..Fusion classification of hyperspectral image by composite kernels support vector machine [J].Opt.Precision Eng., 2011, 19(4):878-883.(in Chinese)
郭辉, 徐浩军, 刘凌. 基于回归型支持向量机的空战目标威胁评估[J]. 北京航空航天大学学报, 2010, 36(1):123-127. GUO H, XU H J, LIU L.Target threat assessment of air combat based support vector machines for regression [J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):123-127.
KENNEDY J, EBERHART R C.Particle swarm optimization.Proceeding of the IEEE International Conference on Neural Networks.Perth, 1995:1942-1948.
CORTES C, VAPNIK V.Support-vector network [J].Machine Learning, 1995, 20(3):273-297.
CHANG CH CH, LIN CH J.LIBSVM:A library for support vector machines [J].ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3):1-27.
0
浏览量
567
下载量
15
CSCD
关联资源
相关文章
相关作者
相关机构