浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春,130033
收稿日期:2013-04-07,
修回日期:2013-05-13,
纸质出版日期:2014-06-25
移动端阅览
焦健, 徐念喜, 冯晓国等. 基于十字单元的可调谐互补屏频率选择表面[J]. 光学精密工程, 2014,22(6): 1430-1437
JIAO Jian, XU Nian-xi, FENG Xiao-guo etc. Tunable complementary frequency selective surfaces based on cross-elements[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1430-1437
焦健, 徐念喜, 冯晓国等. 基于十字单元的可调谐互补屏频率选择表面[J]. 光学精密工程, 2014,22(6): 1430-1437 DOI: 10.3788/OPE.20142206.1430.
JIAO Jian, XU Nian-xi, FENG Xiao-guo etc. Tunable complementary frequency selective surfaces based on cross-elements[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1430-1437 DOI: 10.3788/OPE.20142206.1430.
为实现频率选择表面(FSS)工作频点的可调谐,将环型孔径FSS负载分离后形成感性表面与容性表面,利用两者之间的耦合机制设计了一种互补屏FSS。建立了互补屏FSS等效电路模型,定性分析了它的变频机理。采用耦合积分方程法计算了负载贴片旋转角,耦合电介质厚度和相对介电常数对互补屏传输特性的影响。利用镀膜与光刻方法在耦合电介质两侧制备容性表面与感性表面,并用自由空间法测试250 mm×250 mm样件的传输特性。计算与测试结果均表明:当十字贴片从0°旋转至10°,互补屏FSS的谐振频点会从18.2 GHz向低频漂移至14.8 GHz。当耦合电介质的物理厚度从0.1 mm变化到1 mm时,互补屏FSS的容性表面和感性表面之间的耦合效应逐渐消失。耦合电介质相对介电常数增加使互补屏间的耦合增强,其工作频点向低频漂移。实验显示:随着负载贴片旋转角的变化,互补屏FSS能够实现主动变频功能,为设计和制备主动FSS提供借鉴。
To tune the operating frequency of a Frequency Selective Surface (FSS)
the load impedance of the loop slot FSS forms was separated to an inductive surface and a capacitive surface
and the coupling mechanism between the two surfaces was used to develop a Complementary FSS(CFSS). An equivalent circuit model of the CFSS was established and its tunable resonance mechanism was analyzed quantitatively. The influences of the rotating angle of the load patch
coupled dielectric thickness and the relative dielectric constant on the transmission characteristics of the CFSS were calculated accurately by using the coupled integral equation method
then the inductive surface and the capacitive surface were fabricated on both sides of the coupled dielectric by the coating and lithography methods. The transmission response of a 250 mm × 250 mm CFSS prototype was measured by using the free space method. The calculated and measured results show that the CFSS resonance will be tuned from 18.2 GHz to 14.8 GHz by rotating the cross patch from 0 degree to 10 degree. The coupling effect between the capacitive surface and the inductive surface will disappear by increasing the physical thickness of the coupling dielectric from 0.1 mm to 1 mm. With increasing the relative dielectric constant of the coupling medium
the coupling between the CFSSs will be strengthened and the operating frequency will shift to lower frequencies. It concludes that the CFSS can realize the active resonance conversion function as the rotating angle changes
which provides references for the design and manufacture of active FSSs.
蒙志君,黄俊,武哲,等. 即贴型单层带通FSS的传输特性[J]. 光学 精密工程,2008,26(7):1247-1252. MENG ZH J,HUANG J,WU ZH. Transmission properties of adhesive single-layer bandpass FSS[J]. Opt.Precision Eng., 2008,26(7):1247-1252.(in Chinese)
贾宏燕,高劲松,冯晓国. 新型单元的频率选择表面[J]. 光学 精密工程,2008,16(11):2076-2080. JIA H Y, GAO J S,FENG X G. Novel element frequency selective surface [J]. Opt. Precision Eng. 2008,16(11):2076-2080. (in Chinese)
贾宏燕,高劲松,冯晓国. 改变Y孔单元排列方式对FSS极化稳定性的影响[J]. 光学 精密工程,2007,15(6):978-982. JIA H Y, GAO J S,FENG X G. Influence on polarization independence of frequency selective surface by altering Y slot element arrangement [J]. Opt. Precision Eng. 2007, 15(6):978-982. (in Chinese)
徐念喜,高劲松,梁凤超,等. 利用电场和磁场耦合制备微型化频率选择表面[J]. 光学 精密工程, 2011,19(10):2333-2341. XU N X, GAO J S, LIANG F CH, et al.. Fabrication miniaturized-element frequency selective surfaces utilizing the coupling between electric and magnetic field[J]. Opt. Precision Eng., 2011, 19(10): 2333-2341. (in Chinese)
DICKIE R, CAHILL R, GAMBLE H, et al.. Submillimeter wave frequency selective surface with polarization independent spectral responses[J]. IEEE Transaction on Antennas and Propagation, 2009, 57(7):1985-1994.
PHILIPS B, PARKER E A, LANGLEY R J. Active FSS in an experimental horn antenna switchable between two beam widths[J]. Electronics Letters, 1955, 31(1):1-2
SANZ-LZQUIERDO B, PARKER E A, BATCHELOR J C. Dual-band tunable screen using complementary split ring resonators[J]. IEEE Transaction on Antennas and Propagation, 2010, 58(11):3761-3765.
GIANVITTORIO J P, ZENDEJAS J, RAHMAT-SAMII Y, et al.. Reconfiguable MEMS-enabled frequency selective surfaces[J]. Electronics Letters, 2002, 38(25):1627-1628.
VARDAXOGLOU J C. Optical switching of frequency selective surface bandpass response[J]. Electronics Letters,1996, 32(25):2345-2346.
王操.单元可旋转的频率选择表面电磁散射特性研究 [D]. 上海:上海交通大学,2007. WANG C. Analysis of Electromagnetic Scattering Characteristics of Rotated Frequency Selective Structure [D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
LOCKYER D S, VARDAXOGLOU J C, SIMPKIN R A. Complementary frequency selective surfaces[J]. IEE Proc.-Microw. Antennas Propag., 2000, 147(6):501-507.
SHULEY N V. High-order mode interaction in planar periodic structures[J]. Proc. Inst. Elect. Eng. Microwave Antennas Propag. Ser. H, 1984, 131:129-132.
JOHANSSON F S. Analysis and design of double layer frequency selective surfaces[J]. Proc. Inst. Elect. Eng. Microwave Antennas Propag.Ser.H, 1985, 132:319-325.
ORTA R, TASCONE R, ZICH R. Multiple dielectric loaded perforated screens frequency selective surfaces[J]. Proc. Inst. Elect. Eng. Microwave Antennas Propag. Ser. H, 1988, 135:75-82.
FERESIDIS A P, APOSTOLOPOULOS G, SERFAS N, et al.. Closely coupled merallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays[J]. IEEE Trans. Antennas and Progapgation,2004, 152(5):1154-1155.
WAKABAYASHI H, KOMINAMI M, KUSAKA H. Numerical simulations for frequency-selective surfaces with complementary elements[J]. IEE Proc.-Microw. Antenna Progapgation, 1994,141(6):477-482.
MUNK B A. Frequency Selective Surfaces: Theory and Design[M]. New York: Wiley, 2000
0
浏览量
607
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构