浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室吉林大学实验区,吉林 长春,130012
收稿日期:2013-08-16,
修回日期:2013-10-31,
纸质出版日期:2014-06-25
移动端阅览
王铭海, 曹军胜, 郜峰利. 双臂对称性对压缩传感用于关联成像重构的影响[J]. 光学精密工程, 2014,22(6): 1438-1445
WANG Ming-hai, CAO Jun-sheng, GAO Feng-li. Influence of two-arm symmetry on reconstructed image of compressive sensing for ghost imaging[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1438-1445
王铭海, 曹军胜, 郜峰利. 双臂对称性对压缩传感用于关联成像重构的影响[J]. 光学精密工程, 2014,22(6): 1438-1445 DOI: 10.3788/OPE.20142206.1438.
WANG Ming-hai, CAO Jun-sheng, GAO Feng-li. Influence of two-arm symmetry on reconstructed image of compressive sensing for ghost imaging[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1438-1445 DOI: 10.3788/OPE.20142206.1438.
根据压缩传感理论和关联成像模型,将压缩传感理论应用于关联成像中,实现了传统的双臂关联成像的压缩传感重构。通过仿真实验验证了压缩传感用于关联成像的可行性,以峰值信噪比(PSNR)为衡量指标,分别对压缩传感和传统关联算法的重构图像质量进行了量化。仿真实验表明,压缩传感和关联算法的重构效果均随测量次数的增加而变优,在相同的测量次数下,压缩传感在关联成像中的重构图像的PSNR比传统的关联重构图像高20 dB以上。将压缩传感用于实际双臂关联成像的实验结果表明,压缩传感可以实现双臂关联成像装置的图像重构,但其重构质量很难优于传统关联算法的重构。针对这一实际实验与仿真实验似乎相矛盾的特殊现象,从双臂对称性的角度进行了合理解释,并利用实验中实际的散斑场对该现象进行了验证,最后提出了解决方案。
According to Compressive Sensing (CS) algorithms and the Ghost imaging (GI) model
the CS was applied to the GI system to complete the CS reconstruction of an image. The feasibility of CS applied in GI was firstly validated by a simulation experiment. By using Peak Signal to Noise Ratio(PSNR) as the measure
the restructured images based on CS and traditional GI correlation algorithms were quantified respectively. The simulation experiment results indicate that both the restructured images are getting better with the increase of the number of measurements
however
the PSNR of CS reconstruction image is above 20 dB higher than that of the traditional correlation reconstruction method at the same number of measurements. Furthermore
the CS was applied in an actual two-arm GI experiment. The experiment results indicate that the CS can achieve the image reconstruction of two-arm correlation imaging equipment
but its reconstruction quality is hard to be better than that of the GI correlation algorithm. For this special confliction phenomenon
the paper gives some reasonable interpretations from the two-arm symmetry perspective and then fully validates the interpretations by using the actual speckle pattern from the experiment. Finally
it proposes a solution scheme.
PITTMAN T B,SHIH Y H, STREKALOV D V,et al.. Optical imaging by means of two-photon quantum entanglement[J]. Phys. Rev. A, 1995,52(5):R3429-R3432.
MEYERS R E,DEACON K S. Quantum ghost imaging experiments at ARL[J]. SPIE, 2010,7815: 78150I-1.
SHAPIRO J H. Computational ghost imaging [J]. Phy. Rev. A, 2008, 78(6): 061802-1-4.
FERRI F, MAGATTI D, LUGIATO L A,et al.. Differential ghost imaging [J]. Phys. Rev. L.,2010, 104(25): 253603-1-4.
BROMBERG Y, KATZ O,SILBERBERG Y. Ghost imaging with a single detector [J]. Phys. Rev. A, 2009, 79(5): 053840-1-4.
CHEN X, AGAFONOV I N,LUO K,et al.. High-visibility, high-order lensless ghost imaging with thermal light[J]. Optics Letters, 2010, 35(8):1166-1168.
KATZ O,BROMBERG Y,SILBERBERG Y. Compressive ghost imaging [J]. Applied Physics Letters,2009, 95(13): 131110-1-3.
陆明海, 沈夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究 [J]. 光学学报,2011, 31(7): 98-103. LU M H,SHEN X,HAN SH SH. Ghost imaging via compressive sampling based on digital micromirror device [J]. Acta Optica Sinica, 2011, 31(7):98-103.(in Chinese)
DU J,GONG W,HAN S.The influence of sparsity property of images on ghost imaging with thermal light[J]. Optics Letters, 2012, 37(6):1067-1069.
白旭,李永强,赵生妹. 基于压缩感知的差分关联成像方案研究[J]. 物理学报,2013, 62(4): 044209-1-8. BAI X, LI Y Q,ZHAO SH M. Differential compressive correlated imaging[J]. Acta Phys. Sin., 2013, 62(4): 044209-1-8.(in Chinese)
CANDES E J, ROMBERG J K,TAO T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics,2006, 59(8): 1207-1223.
CANDS E,ROMBERG J. Sparsity and incoherence in compressive sampling[J].Inverse Problems, 2007, 23(3): 969-985.
CANDES E,WAKIN M. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
LIANG D, ZHANG H F,YING L. Compressed-sensing photoacoustic imaging based on random optical illumination [J]. International Journal of Functional Informatics and Personalised Medicine,2009, 2(4): 394-406.
ZAMBRANO-NUNEZ M,MARENGO E A,FISHER J M. Coherent single-detector imaging system [C]. IEEE, 2010:111-115.
俞文凯,姚旭日,刘雪峰,等. 压缩传感用于极弱光计数成像[J]. 光学 精密工程,2012,20(10):2283-2292. YU W K, YAO X R, LIU X F,et al.. Compressed sensing for ultra-weak light counting imaging[J]. Opt. Precision Eng., 2012,20(10):2283-2292.(in Chinese)
TROPP J A,GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12):4655-4566.
DUNCAN D D,KIRKPATRICK S J. Algorithms for simulation of speckle (laser and otherwis) [C]. SPIE,2008,6855:685505-1-8.
0
浏览量
467
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构