浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 长春光学精密机械与物理研究所 发光学及其应用国家重点实验室,吉林 长春,130033
3. 东北师范大学,吉林 长春,130021
收稿日期:2013-04-23,
修回日期:2013-05-30,
纸质出版日期:2014-06-25
移动端阅览
陈泳屹, 秦莉, 佟存住等. 用于光束整形的表面等离子体双光栅结构[J]. 光学精密工程, 2014,22(6): 1461-1468
CHEN Yong-yi, QIN Li, TONG Cun-zhu etc. Dual gratings based on surface plasmons for optical beam shaping[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1461-1468
陈泳屹, 秦莉, 佟存住等. 用于光束整形的表面等离子体双光栅结构[J]. 光学精密工程, 2014,22(6): 1461-1468 DOI: 10.3788/OPE.20142206.1461.
CHEN Yong-yi, QIN Li, TONG Cun-zhu etc. Dual gratings based on surface plasmons for optical beam shaping[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1461-1468 DOI: 10.3788/OPE.20142206.1461.
为了对双边布拉格反射波导半导体激光器的远场双瓣特性进行整形,使之合并成为单瓣出光远场,在布拉格反射波导的出光腔面上制作了表面等离子体双光栅结构。利用Au-SiO
2
光栅结构对表面等离子体的耦合效应和表面等离子体的透射增强现象将双瓣远场耦合成为单瓣出射,然后通过Au-Si
3
N
4
光栅结构将透射的表面等离子体耦合成为光子进行准直出射,最终得到单瓣准直的远场光斑。计算结果表明:当Au-SiO
2
光栅厚度为50 nm,填充因子为0.5,光栅周期为350 nm;Au-Si
3
N
4
光栅厚度为70 nm,填充因子为0.5,光栅周期为660 nm时可以得到远场发散角压缩到6.1°的整形光斑,比没有双光栅结构的发散角缩小了3.6倍;其远场透射光功率达到了模式光源的62%,是没有双光栅结构单瓣出射功率的1.59倍;同时腔面反射率也降低到12.4%,是没有双光栅结构的0.53倍。结果显示,提出的双光栅结构优化了布拉格反射波导半导体激光器的出光远场特性。
To shape the beam with two-lobe far-field property from a dual side Bragg reflection waveguide semiconductor laser
a dual grating structure based on surface plasmons was prepared on the optical outlet facet of a Bragg reflection waveguide.It could combine the two lobes into a single lobe and to increase the optical intensity and quality of the beam. An Au-SiO
2
grating was used to couple photons into surface plasmons and to combine the two lobe beams into a single beam. The surface plasmons also were taken to increase the extraordinary optical transmission. On the other hand
the Au-Si
3
N
4
grating was used to help the outlet surface plasmons couple back to photons
meanwhile collimating the outlet beam to increase the far-field property. Numerical simulation results indicate when the parameters for Au-SiO
2
show a depth of 50 nm
a filling factor of 0.5 and a duration of 350 nm
and those for Au-Si
3
N
4
show 70
0.5 and 660 nm
respectively
the outlet far-field beam will has a 6.1° divergence
which means the divergence angle shrinks by 3.6 times as that without the dual grating structure. The far-field optical transmission power reaches 62% of the model source
that is 1.59 times of the power of a single lobe far-field to the structure without the dual grating. Moreover
the cavity facet reflectivity has reduced to 12.4%
0.53 times as the structure without the dual grating. It concludes that the dual grating structure has optimized the far field properties of dual side Bragg reflection waveguide semiconductor lasers.
LEDENTSOV N N, SHCHUKIN V A. Novel concepts for injection lasers[J]. Opt. Eng., 2002, 41(12):3193-3203.
WEST B R, HELMY A S. Properties of the quarter-wave Bragg reflection waveguide: theory[J]. J. Opt. Soc. Am. B, 2006,23(6):1207-1220.
BIJLANI B J, HELMY A S. Bragg reflection waveguide diode lasers[J]. Opt. Lett., 2009, 34(23): 3734-3736.
TONG C Z, BIJLANI B, ALALI S, et al.. Characteristics of edge emitting Bragg reflection waveguide lasers[J]. IEEE J. Quantum Electron., 2010,46(11):1605-1610.
WANG L J, YANG Y, ZENG Y G, et al.. High power single-sided Bragg reflection waveguide lasers with dual-lobed far field[J]. Appl. Phys. B, 2012, 107(3):809-812.
MAIER S A. Plasmonics: Fundamentals and Applications[M]. London:Springer, 2007:21.
熊尚,罗雪丰,韩立. 纯金膜表面等离子增强的旋光效应[J]. 光学 精密工程,2012, 20(7):1525-1531. XIONG SH, LUO X F, HAN L. Plasmon enhanced megneto-optical effect on surface of pure gold film[J]. Opt. Precision Eng., 2012, 20(7):1525-1531.(in Chinese)
王弋嘉,张崇磊,王蓉,等. 差分干涉表面等离子体共振传感器的优化与验证[J]. 光学 精密工程, 2013,21(3): 672-679. WANG Y J, ZHANG CH L, WANG R,et al.. Optimization and validation of the differential interferometric surface plasmon resonance sensor[J]. Opt. Precision Eng., 2013,21(3):672-679. (in Chinese)
陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012(5): 453-463. CHEN Y Y, TONG C ZH, QIN L,et al.. Process in surface plasmon politaron nano-laser technologies and applications[J]. Chinese Optics, 2012(5): 453-463.(in Chinese)
EBBESEN T W, LEZEC H J, GHAEMI H F, et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998,391: 667-669.
PORTO J A, GARCIA-VIDAL F J, PENDRY J B. Transmission resonances on metallic gratings with very narrow slits[J]. Phys. Rev. Lett., 1999,83(14):2845-2848.
GENET C, EBBESEN T W. Light in tiny holes[J]. Nature, 2007, 445:39-46.
MARTIN-MORENO L, GARCIA-VIDAL F J, LEZEC H J, et al.. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys. Rev. Lett., 2003,90(16):167401-1670404.
YU L B, LIN D Z, CHEN Y C, et al.. Physical origin of directional beaming emitted from a subwavelength slit[J]. Phys. Rev. B, 2005,71(4):041405-041408..
LIN D Z, CHANG C K, CHEN Y C, et al.. Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings[J]. Opt. Express, 2006, 14(8):3503-3511.
KIM S, KIM H, LIM Y,et al.. Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings [J]. Appl. Phys. Lett., 2007, 90(5):051113-051115.
DITLBACHER H, KRENN J R, HOHENAU A, et al.. Efficiency of local light-plasmon coupling[J]. Appl. Phys. Lett., 2003,83(18):3665-3667.
GHAEMI H F, THIO T, GRUPP D E. Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys. Rev. B, 1998, 58(11):6779-6782.
JANG S J, YEO C I, YU J S, et al.. 1.55-μm DFB lasers with narrow ridge stripe and second-order metal surface gratings by holographic lithography[J]. Phys. Status Solidi. A, 2010,207(8):1982-1987.
0
浏览量
352
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构