浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2013-12-11,
修回日期:2014-01-27,
纸质出版日期:2014-06-25
移动端阅览
段镇, 高九州, 贾宏光等. 无人机滑跑线性化建模与增益调节纠偏控制[J]. 光学精密工程, 2014,22(6): 1507-1516
DUAN Zhen, GAO Jiu-zhou, JIA Hong-guang etc. Linearized modeling and gain scheduling control for UAV taxiing[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1507-1516
段镇, 高九州, 贾宏光等. 无人机滑跑线性化建模与增益调节纠偏控制[J]. 光学精密工程, 2014,22(6): 1507-1516 DOI: 10.3788/OPE.20142206.1507.
DUAN Zhen, GAO Jiu-zhou, JIA Hong-guang etc. Linearized modeling and gain scheduling control for UAV taxiing[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1507-1516 DOI: 10.3788/OPE.20142206.1507.
由于无人机的三轮滑跑阶段是整个飞行过程最容易出问题的环节,本文对前三点式无人机地面滑跑进行建模并研究了前轮转向纠偏控制方法。首先,分析了无人机三轮滑跑阶段的受力情况;考虑发动机扭矩、推力偏心及停机角对模型的影响,建立了无人机地面三轮滑跑非线性数学模型;然后,利用小扰动原理在合理简化的前提下将非线性模型线性化,分别推导了前轮转角为输入,偏航角速度、偏航角、侧偏距为输出的传递函数,设计了三回路增益调节前轮转向纠偏控制律;最后,通过滑跑试验进行了验证。试验结果表明:在初始航向偏差为3°,初始侧向位置偏差为0.2 m的情况下,无人机由静止滑行至速度为32 m/s过程中的最大侧偏距为0.3 m,最大偏航角为4.5°,并且对不大于4.6 m/s的侧风干扰有较好的抑制作用,对跑道路况、轮胎侧偏刚度及轮胎弹性等不确定因素的影响有较好的鲁棒性。该设计已成功应用于某无人机。
As the three wheel taxiing stage of an Unmanned Aerial Vehicle (UAV) is the most vulnerable in whole flight process
this paper explores linear modeling and a gain scheduling control method of nose wheel steering turning for a tricycle-undercarriage UAV in taxiing on the ground. The force of three wheel taxiing of the UAV was analyzed
and its nonlinear mathematical model was established considering the effect of engine torque
thrust misalignment and ground angles. Then
the nonlinear model was linearized using small perturbation theory under reasonable assumptions
and the transfer function was deduced by using the nose wheel steering angle as a input and the yaw rate
yaw angle
and lateral deviation as outputs. The three gain scheduling control law through nose wheel steering turning was designed. Finally
the method was verified through a field taxiing test. The result shows that the most lateral position deviation is 0.3 m and the most yaw deviation is 4.5° under an initial yaw deviation of 3° and a lateral position deviation of 0.2 m during the process of taxiing from rest to the speed of 32 m/s. Moreover
the crosswind disturbance of not more than 4.6 m/s was inhibited. The control law designed by using the method above is robustness to the uncertain factors of the runway
tire cornering stiffness and tire deflection and has been applied to a practical UAV successfully.
王鹏,周洲. 飞翼无人机着陆滑跑建模和控制仿真研究[J]. 系统仿真学报,2011,23(1):118-122. WANG P,ZHOU ZH. Study of modeling and control simulation for flying-wing UAV in ground motion during landing [J].Journal of System Simulation,2011,23(1):118-122.(in Chinese)
DENISON N A. Design of Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion [D]. Thesis: Department of the Air Force Air University, 2007.
VOLKAN K.Design of an Autonomous Landing Control Algorithm for a Fixed Wing UAV [D]. Ankara:Middle East Technical University,2007.
段松云. 无人机起飞/着陆阶段建模和飞行动力学仿真系统设计 [D]. 北京,清华大学,2004. DUAN S Y. Modeling of a Unmanned Aerial Vehicle during Take-off/Landing and Flight Dynamics Simulation [D].Beijing: Tsinghua University,2004. (in Chinese)
张明. 飞机地面动力学若干关键技术研究 [D]. 南京,南京航空航天大学,2009. ZHANG M. Research on Some Key Technologies of Aircraft Ground Dynamics [D].Nanjing:Nanjing University of Aeronautics and Astronautics,2009. (in Chinese)
张华亮,周洲. 飞翼无人机地面滑跑建模与航向控制[J]. 系统仿真学报,2008,20(24):6759-6762. ZHANG H L,ZHOU ZH. Modeling and direction-controlling for flying-wing UAV in ground motion[J]. Journal of System Simulation, 2008,20(24):6759-6762. (in Chinese)
SAUSSIE D, AKHRIF O, SAYDY L. Robust and scheduled flight control with handling quality requirements Saussie [C]. Guidance Navigation and Control Conference. California, AIAA, 2005, 2:1488-1495.
王勇, 王英勋. 无人机滑跑纠偏控制[J]. 航空学报,2008,29(增刊). WANG Y,WANG Y X. Lateral deviation correction control for UAV taxiing [J].Acta Aeronautica et Astronautica Sinica, 2008,29. (in Chinese)
袁朝辉,王怿,杨芳. 飞机地面滑跑方向的模糊控制系统仿真研究[J]. 计算机仿真,2011,28(2):76-79. YUAN ZH H,WANG Y,YANG F. Application of new fuzzy control in air planes’ integrated ground directional control system [J]. Journal of System Simulation, 2011,28(2):76-79. (in Chinese)
许江涛,崔乃刚,吕世良. 协调增益调度的重复使用助推器姿态控制设计[J]. 光学 精密工程,2010,18(12):2590-2596. XU J T,CUI N G,LV SH L.Design of coordinated gain scheduled attitude controller for reusable booster vehicle [J]. Opt. Precision Eng., 2010,18(12):2590-2596. (in Chinese)
KARL J A, BJORN W. Adaptive control[M]. N.Y.:Mineola,2008.
李迪,陈向坚,续志军. 增益自适应滑模控制器在微型飞行器飞行姿态控制中的应用[J]. 光学 精密工程, 2013,21(5): 1183-1191. LI D, CHEN X J, XU ZH J. Gain adaptive sliding mode controller used for flight attitude control of MAV[J]. Opt. Precision Eng.,2013,21(5): 1183-1191. (in Chinese)
张跃,储海荣. 增益调度自动驾驶仪结构特点与变轨迹飞行控制[J]. 光学 精密工程, 2012,20(7): 1595-1602. ZHANG Y,CHU H R. Structural characteristics of gain scheduling autopilot for transfer trajectory control[J]. Opt. Precision Eng.,2012,20(7): 1595 -1602. (in Chinese)
LI B, JIAO Z X, WANG S P. Research on modeling and simulation of aircraft taxiing rectification [C].IEEE Conference on Robotics, Automation and Mechatronics.USA:IEEE,2006:1-5.
吴森堂,费玉华.飞行控制系统[M]. 北京:北京航空航天大学出版社,2005. WU S T, FEI Y H. Flight Control System[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2005.
0
浏览量
819
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构