浏览全部资源
扫码关注微信
1. 厦门大学 机电工程系,福建 厦门,361005
2. 厦门理工学院 机电工程系,福建 厦门,361024
收稿日期:2013-12-05,
修回日期:2014-01-19,
纸质出版日期:2014-06-25
移动端阅览
郑高峰, 何广奇, 刘海燕等. 电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J]. 光学精密工程, 2014,22(6): 1555-1561
ZHENG Gao-feng, HE Guang-qi, LIU Hai-yan etc. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1555-1561
郑高峰, 何广奇, 刘海燕等. 电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J]. 光学精密工程, 2014,22(6): 1555-1561 DOI: 10.3788/OPE.20142206.1555.
ZHENG Gao-feng, HE Guang-qi, LIU Hai-yan etc. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1555-1561 DOI: 10.3788/OPE.20142206.1555.
研究了用静电纺丝技术制造微纳气体传感器的方法。采用PVP(Polyvinyl Pyrrolidone)/Zn(Ac)
2
和PEO(Polyoxyethylene )/Zn(Ac)
2
两种混合溶液作为原料,通过电纺喷射获得了复合前驱体纳米纤维;在空气中加热至500℃去除聚合物,并使Zn(Ac)
2
受热分解、氧化获得ZnO纳米纤维;利用X射线衍射术(XRD)对ZnO纳米纤维进行成分表征;最后实验检测了ZnO纳米纤维气敏传感器对乙醇和丙酮气体的传感特性。结果显示:以PVP/Zn(Ac)
2
、PEO/Zn(Ac)
2
复合纳米纤维为前驱体制得的ZnO纳米纤维平均直径分别为308 nm、184 nm;这种纳米纤维经加热氧化可获得高纯度ZnO纳米纤维;在室温条件ZnO纳米纤维气敏传感器对目标气体传感响应时间小于1 s,其传感灵敏值随着气体浓度的增大而升高。另外,以PEO/Zn(Ac)
2
为前驱体制得的ZnO纳米纤维表面粗糙、比表面积大,具有较高的传感灵敏值,对于乙醇、丙酮两种目标气体的最高灵敏值分别为215.69和118.13。得到的结果表明:静电纺丝技术的引入为半导体微纳气敏传感器的集成制造提供了有效的方法。
The application of electrospinning fabrication technology in micro/nano sensor production was investigated. Mixed solutions of praecursor bodies PVP(Polyvinyl Pyrrlidone)/Zn(Ac)
2
and PEO(Polyoxyethylene)/Zn(Ac)
2
were used as the electrospinning materials to make a precursor nanofiber. The precursor nanofiber was calcined at 500 °C in the air to remove polymers and the Zn(Ac)
2
was thermally decomposed and oxidized into ZnO. X-ray diffraction (XRD) was used to charaterize the components of a ZnO nanofiber. The sensing response of a ZnO nanofibrous gas sensor on the ethanol and acetone vapors were tested. The test results indicate that the average diameters of ZnO nanofiber made from PVP/Zn(Ac)
2
PEO/Zn(Ac)
2
precursor are 308 nm and 184 nm
respectively. XRD spectrograms show that the ZnO nanofiber with high purity can be obtained from a blended precursor nanofiber through thermal oxidation. The response time of the ZnO nanofibrous sensor on the objective gas is less than 1 s at room temperature and its sensitivity increases with the increment of gas concentration. Furthermore
the ZnO nanofiber made from PEO/Zn(Ac)
2
precursor shows a roughness surface
a larger specific surface area and higher sensing sensitivity
and the maximal sensitivity of ZnO nanofibrous gas sensor on ethanol and acetone vapor have been up to 215.69 and 118.13
respectively. This work presents a novel method for the integration fabrication of semiconductor micro/nano gas sensors.
ARAFAT M M, DINAN B, AKBAR S A, et al.. Gas sensors based on one dimensional nanostructured metal-oxides: a review [J]. Sensors, 2012, 12(6): 7207-7258.
KIM M G, KANATZIDIS M G, FACCHETTI A, et al.. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing [J]. Nat. Mater., 2011, 10(5): 382-388.
JAGTAP S, PRIOLKAR K R. Evaluation of ZnO nanoparticles and study of ZnO-TiO2 composites for lead free humidity sensors [J]. Sensor Actuat B-Chem, 2013, 183: 411-418.
NASR B, WANG D, KRUK R, et al.. High-Speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors [J]. Adv Funct Mater, 2013, 23(14): 1750-1758.
XUE X, NIE Y, HE B, et al.. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor [J]. Nanotechnology, 2013, 24(22): 225501.
KO S H, LEE D, KANG H W, et al.. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell [J]. Nano Lett., 2011, 11(2): 666-671.
由丽梅, 霍丽华, 程晓丽, 等. 纺锤状氧化锌的制备及气敏性能研究[J]. 化学传感器, 2013, 33(1): 60-63. YOU L M, HUO L H, CHENG X L, et al.. Study on preparation and gas-sensing properties of spindle shaped ZnO powders [J]. Chem. Sen., 2013, 33(1):60-63. (in Chinese)
YI J, LEE J M, PARK W I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors [J]. Sensor Actuat. B-Chem., 2011, 155(1): 264-269.
LIM Y T, SON J Y, RHEE J S. Vertical ZnO nanorod array as an effective hydrogen gas sensor [J]. Ceram. Int., 2013, 39(1): 887-890.
RAI P, SONG H M, KIM Y S, et al.. Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application [J]. Mater. Lett., 2012, 68: 90-93.
BAI S, LIU X, LI D, et al.. Synthesis of ZnO nanorods and its application in NO2 sensors [J]. Sensor Actuat. B-Chem., 2011, 153(1): 110-116.
HASSAN H S, KASHYOUT A, SOLIMAN H, et al.. Effect of reaction time and Sb doping ratios on the architecturing of ZnO nanomaterials for gas sensor applications [J]. Appl. Suf. Sci., 2013, 277(15): 73-82.
PATI S, MAITY A, BANERJI P, et al.. Temperature dependent donor-acceptor transition of ZnO thin film gas sensor during butane detection [J]. Sensor Actuat. B-Chem., 2013, 183: 172-178.
陈涛,李正炜,王建立,等. 应用压缩传感理论的单像素相机成像系统[J]. 光学 精密工程,2012,20(11): 2523-2530. CHEN T, LI ZH W,WANG J L, et al.. Imaging system of single pixel camera based on compressed sensing [J]. Opt. Precision Eng., 2012, 20(11): 2523-2530. (in Chinese)
俞文凯,姚旭日,刘雪峰,等. 压缩传感用于极弱光计数成像[J]. 光学 精密工程,2012,20(10): 2283-2292. YU W K, YAO X R, LIU X F, et al.. Compressed sensing for ultra-weak light counting imaging[J]. Opt. Precision Eng., 2012, 20(10): 2283-2292. (in Chinese)
KATOCH A, SUN G J, CHOI S W, et al.. Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofiber [J]. Sensor Actuat. B-Chem., 2013, 185(8): 411-416.
ZHENG Y, XIE S, ZENG Y. Electric field distribution and jet motion in electrospinning process: from needle to hole [J]. J. Mater. Sci., 2013, 48(19): 6647-6655.
李文望,郑高峰,王翔,等. 电纺直写纳米纤维在图案化基底的定位沉积[J]. 光学 精密工程,2010,18(10): 2231-2238. LI W W, ZHENG G F, WANG X, et al.. Position deposition of electrospinning direct-writing nanofiber on pattern substrate [J]. Opt. Precision Eng., 2010, 18(10):2231-2238. (in Chinese)
HAN L, ANDRADY A A, ENSOR D S. Chemical sensing using electrospun polymer/carbon nanotube composite nanofiber with printed-on electrodes [J]. Sensor Actuat. B-Chem., 2013, 168(1): 52-55.
赵恩铭,雒莘梓,李乐,等. 电纺氧化硅凝胶亚微米光波导[J]. 光学 精密工程,2012,20(6): 1282-1287. ZHAO E M, LUO X Z. LI L, et al.. Electrosupn silicon gel submicrometer optical waveguides[J]. Opt. Precision Eng., 2012, 20(6):1282-1287. (in Chinese)
ZAMPETTI E, MACAGNANO A, BEARZOTTI A. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature [J]. J. Nanopart. Res., 2013, 15(4): 1-8.
徐韵,李云鹏,金璐,等. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射[J]. 物理学报,2013,62(8): 084207. XU Y, LI Y P, JIN L, et al.. Low-threshold electrically pumped ultraviolet random lasing from ZnO film prepared by pulsed laser deposition[J]. Acta Phys. Sin., 2013, 62(8):084207. (in Chinese)
HSU H C, HUANG H Y, ERIKSSON M O, et al.. Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method [J]. Appl. Phys. Lett., 2013, 102(1): 013109.
0
浏览量
230
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构