浏览全部资源
扫码关注微信
中国石油大学(华东)信息与控制工程学院,山东 青岛,266580
[ "张冬至(1981- ),男,山东聊城人,博士,讲师,2004年于山东理工大学获学士学位,2007年于中国石油大学(华东)获得硕士学位,2011年于华南理工大学获博士学位,主要从事测试计量技术与仪器、微机电系统(MEMS)与柔性电子技术等研究。E-mail:dzzhang@upc.edu.cn" ]
收稿日期:2013-11-08,
修回日期:2013-12-30,
纸质出版日期:2014-06-25
移动端阅览
张冬至,. 静电诱导自组装碳纳米管薄膜的结构表征与电学性能[J]. 光学精密工程, 2014,22(6): 1562-1570
ZHANG Dong-zhi,. Structure characterization and electric properties of electrostatic-induced self-assembly carbon nanotube films[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1562-1570
张冬至,. 静电诱导自组装碳纳米管薄膜的结构表征与电学性能[J]. 光学精密工程, 2014,22(6): 1562-1570 DOI: 10.3788/OPE.20142206.1562.
ZHANG Dong-zhi,. Structure characterization and electric properties of electrostatic-induced self-assembly carbon nanotube films[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1562-1570 DOI: 10.3788/OPE.20142206.1562.
为了给高性能微机电系统(MEMS)薄膜器件提供复合功能薄膜材料,本文将功能化碳纳米管与聚电解质溶液交互沉积技术用于静电诱导逐层自组装碳纳米管/聚合物薄膜。对薄膜制备及其性能的可调控性进行了表征和测试。扫描电镜显微(SEM)形貌观察表明,碳纳米管与聚合物分子链结合致密,形成了质地均匀的随机碳纳米管网络结构。拉曼光谱结果表明,碳纳米管在径向呼吸、缺陷振动、拉伸振动等模式下的指纹特征光谱证实了碳纳米管的有效组装和加载。用石英晶体微天平(QCM)对碳纳米管/聚合物薄膜自组装过程进行了在线实时监测,结果揭示了沉积薄膜厚度和薄膜结构的可调控性。当聚电解质层数由0递增到5时,子层膜厚由6.31 nm增加到111.59 nm,碳纳米管加载体积比由72.35 %减小到14.78 %。此外,基于
I-V
表征研究了碳纳米管填充体积比及其薄膜厚度对碳纳米管/聚合物薄膜电学特性的影响,为实现碳纳米管/聚合物薄膜电学性能的可调节性提供了实验及理论依据。
To provide building blocks for high-performance Micro-electro-mechanical System (MEMS) devices
Layer-by-layer (LbL) self-assembly of Single-walled Carbon Nanotube (SWNT)/polymer films was proposed and their properties were characterized and tested. The surface morphologies of the SWNT/polymer films observed under a Scanning Electron Microscope(SEM) show high strength
dense and random network structures. Raman spectra of all characteristic peaks for the SWNT in radial breathing mode
disorder mode and tangential mode demonstrate the presence of the SWNT in overall good quality and a loading state. Real time Quarts Crystal Microbalance(QCM) online monitoring illustrates that the deposition thickness and the SWNT loading fraction in the nanocomposite can be controlled in a large range based on LbL sequential deposition process. When the cycle number of polymers increase from 0 to 5
the average film thickness increases from 6.31 to 111.59 nm
and the SWNT volume fraction decreases from 72.35 % to 14.78 %. In addition
the electric properties of the SWNT/polymer films under the influence of SWNT loading fraction and film thickness were investigated through current-voltage characterization. These results provide experimental and theoretical bases for potential applications of SWNT films in MEMS devices.
刘智, 李传波, 薛春来, 等. Si基Ge异质结构发光器件的研究进展[J]. 中国光学, 2013,6(4):449-456. LIU ZH, LI CH B, XUE CH L, et al.. Progress in Ge/Si heterostructures for ligh emitters [J]. Chinese Optics, 2013, 6(4):449- 456. ( in Chinese)
WAGNER H D. Nanocomposites: paving the way to stronger materials [J]. Nat. Nanotech., 2007, 2:742-744.
AVOURIS P, CHEN Z, PEREBEINOS V. Carbon-based electronics [J]. Nat. Nanotech., 2007,2:605-615.
BAUGHMAN R H,ZAKHIDOV A A,HEER W A. Carbon nanotubes-the route toward applications [J]. Science, 2002, 279: 787-792.
JENSEN K, KIM K, ZETTL A. An atomic-resolution nanomechanical mass sensor [J]. Nat. Nanotech., 2008, 3(9): 533-537.
GAO P Q, ZOU J P, LI H, et al.. Complementary logic gate arrays based on carbon nanotube network transistors [J]. Small, 2013, 9(6):813-819.
LU M, LU X K, JANG M W, et al.. Characterization of carbon nanotube nanoswitches with gigahertz resonance frequency and low pull-in voltages using electrostatic force microscopy [J]. J. Micromech. Microeng., 2010, 20(10):105016.
LASSAGNE B, GARCIA-SANCHEZ D, AGUASCA A, et al.. Ultrasensitive mass sensing with a nanotube electromechanical resonator[J]. Nano Lett., 2008, 8(11):3735-3738.
赵振刚, 刘晓为, 王鑫, 等. 基于555多谐振荡器检测的碳纳米管湿敏传感器[J]. 光学 精密工程, 2011, 19(1):118-123. ZHAO ZH G, LIU X W, WANG X, et al.. Carbon nanotube sensors based on 555 multivibrators[J]. Opt. Precision Eng., 2011, 19(1):118-123. ( in Chinese)
STAMPFER C, HELBLING T, OBERGFELL D, et al.. Fabrication of single-walled carbon nanotube-based pressure sensors [J]. Nano Lett., 2006, 6(2):233-237.
梁晋涛, 刘诗斌, 刘君华, 等. 碳纳米管压阻微悬臂梁红外热探测器[J]. 光学 精密工程, 2008, 16(4):682-688. LIANG J T, LIU SH B, LIU J H, et al.. Microcantilever thermal infrared detector with carbon nanotubes [J]. Opt. Precision Eng., 2008, 16(4):682-688. ( in Chinese)
ZHANG J L, WANG C, ZHOU C W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics [J]. ACS Nano, 2012, 6(8):7412-7419.
LOH K J, HOU T C,LYNCH J P, et al.. Carbon nanotube sensing skins for spatial strain and impact damage identification[J]. J. Nondestr. Eval., 2009, 28(1): 9-25.
JAFRI R I, RAMAPRABHU S. Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology [J]. Int. J. Hydrogen Energy, 2010, 35(3):1339-1346.
LIN C T, LEE C Y, CHIN T S. Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films [J]. Carbon, 2011, 49(4):1446-1452.
SOMANI P R, SOMANI S P, LAU S P, et al.. Field electron emission of double walled carbon nanotube film prepared by drop casting method[J]. Solid-State Electron., 2007, 51(5):788-792.
TAKAGI Y, NOBUSA Y, GOCHO S, et al.. Inkjet printing of aligned single-walled carbon-nanotube thin films[J]. Appl. Phys. Lett., 2013, 102(14):143107.
KWON O S, KIM H, KO H, et al.. Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper[J]. Carbon, 2013, 58:116-127.
GRAUPNER R. Raman spectroscopy of covalently functionalized single-wall carbon nanotubes [J]. J. Raman Spectrosc., 2007, 38(6): 673-683.
LEBEL L L, ISSA B A, PAEZ O A, et al.. Three-dimensional micro structured nanocomposite beams by microfluidic infiltration[J]. J. Micromech. Microeng., 2009, 19(12):125009-7.
SAUERBREY G. Use of crystal oscillators for weighing thin films and for microweighing [J]. Z. Phys., 1959, 155(2): 206-222.
XUE W, CUI T. Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films [J]. Nanotech., 2007, 18(14):145709.
BUNDE A., DIETERICH W. Percolation in composites[J]. J. Electroceram., 2000, 5(2): 81-92.
王沛, 姜博, 叶雄英, 等. 多壁碳纳米管/SBS复合材料的制备及其渗流特性[J]. 功能材料与器件学报, 2008, 14(1): 231-235. WANG P, JIANG B, YE X Y, et al.. Fabrication of multi-walled carbon nanotubes/SBS composite and its electrical percolation [J]. J. Funct. Mater. Devices, 2008, 14(1):231-235. ( in Chinese)
0
浏览量
336
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构