浏览全部资源
扫码关注微信
清华大学 精密仪器系 精密测试技术及仪器国家重点实验室 北京,100084
收稿日期:2013-12-05,
修回日期:2014-01-20,
纸质出版日期:2014-06-25
移动端阅览
王帆, 董景新, 赵淑明. 硅微振梁式加速度计的温度检测及闭环控制[J]. 光学精密工程, 2014,22(6): 1590-1597
WANG Fan, DONG Jing-xin, ZHAO Shu-ming. Temperature measurement and close-loop control of silicon resonant accelerometer[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1590-1597
王帆, 董景新, 赵淑明. 硅微振梁式加速度计的温度检测及闭环控制[J]. 光学精密工程, 2014,22(6): 1590-1597 DOI: 10.3788/OPE.20142206.1590.
WANG Fan, DONG Jing-xin, ZHAO Shu-ming. Temperature measurement and close-loop control of silicon resonant accelerometer[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1590-1597 DOI: 10.3788/OPE.20142206.1590.
为实现硅微振梁式加速度计系统芯片级温度测量及系统闭环,本文针对系统的非惯性结构部分提出了微机电系统(MEMS)结构温度的芯片级测量和闭环控制优化方法。与以温控罩的温度作为参考温度的方法不同,该方法提出了供芯片级温度测量的MEMS结构、工艺及配套电路,通过直接测量MEMS结构的温度完成实时补偿,从而提高了测量精度。该方法在闭环控制的前置电路中应用了二极管电容解调电路,与前期使用的跨阻或者跨导方案相比,对器件的要求从pA级降至nA级。运用时域方法求得二极管电路方案的解析解,提出参数优化设计方法,保证了电容测量输入与输出间的线性关系。最后,采用二阶最优模型对闭环控制的后置电路进行参数优化,控制了上电时间。配合硅微振梁式加速度计原理样机进行了实验。实验结果表明,温度补偿后的零偏稳定性为52.0 μ
g
,标度因子稳定性为16.0×10
-6
,分辨率为34.9 μ
g
。这些结果验证了本文理论的可行性。
To measure the chip-level temperature and to achieve close-loop control for a Micro-Electro-Mechanical(MEMS) resonant accelerometer system
this paper investigates non-inertial parts of the system
proposes a method to measure the temperature of the MEMS structure and optimizes the parameters in the close-loop control. Different from the traditional method that using a temperature from a temperature control cover as the conference
this paper proposes design methods of MEMS structures
processing technology and circuits
and achieves the temperature compensation by measuring the MEMS structure temperature directly to improve the temperature measuring accuracy. Furthermore
a diode pre-circuit is applied to detection of the variation of the tiny capacity instead of the transimpedance amplifier and transconductance amplifier
which reduces the requirement for high-performance components from pA to nA magnitudes. Based on the analysis in the time domain
analytical solution of diode pre-circuit is proposed to optimize the parameters and to guarantee the linear relationship between input and output. Moreover
a second-order optimal mode is applied to control of the settling time of the post-circuit. Experiment shows that after compensation on temperature
the MEMS resonant accelerometer has the performance of bias stability of 52.0 μ
g
scale factor stability of 16.0×10
-6
resolution of 34.9 μ
g
. The result indicates that the proposed theories can satisfy the requirements of high-performance MEMS resonant accelerometer systems.
TRUSOV A A,ZOTOV S A, BRENTON R, et al..Silicon accelerometer with differential frequency modulation and continuous self-calibration [C].Proceedings of the 26th IEEE International Conference on Micro Electro Mechanical Systems, Taibei, MEMS, 2012:29-32.
HOPKINS R, MIOLA J, SAWYER W. The silicon oscillating accelerometer: A high-performance MEMS accelerometer for precision navigation and strategic guidance application [J]. Ionntm, 2005: 970-979.
李晶, 樊尚春. 谐振式加速度计模型分析与仿真[J]. 传感器与微系统,2013,32(6): 33-35. LI J, FAN SH CH. Modeling analysis and simulation of resonant accelerometer [J]. Transducer and Microsystem Technologie, 2013, 32(6):33-35. ( in Chinese)
王巍, 王岩, 庄海涵,等. 硅微谐振加速度计的温度特性[J]. 中国惯性技术学报,2013,21(2): 255-258. WANG W, WANG Y, ZHUANG H H,et al.. Temperature characteristic of silicon resonant accelerometer [J]. Journal of Chinese Inertial Technology, 2013,21(2): 255-258. (in Chinese)
石然, 裘安萍, 苏岩. 硅微谐振式加速度计的实现及性能测试[J]. 光学 精密工程,2010,18(12):2583-2588. SHI R, QIU A P, SU Y. Implementation and experiments of micromechanical differential silicon resonant accelerometer [J]. Opt. Precision Eng., 2010,18(12):2583-2588. (in Chinese)
王巍, 王岩, 庄海涵,等. 谐振式硅微加速度计闭环控制系统的分析与设计[J]. 中国惯性技术学报,2012,20(6): 744-748. WANG W, WANG Y, ZHUANG H H, et al.. Analysis and design of closed-loop control system for silicon resonant accelerometer [J]. Journal of Chinese Inertial Technologys, 2012,20(6): 744-748.(in Chinese)
裘安萍, 董金虎. 硅微谐振式加速度计的温度效应及补偿[J]. 纳米技术与精密工程,2012,10(3): 215-219. QIU A P,DONG J H. Temperature effect and compensation of silicon resonant accelerometer [J]. Nanotechnology and Precision Engineering, 2012,10(3):215-219.(in Chinese)
SANGKYUNG S, CHANG J K, JUNGKEUN P, et al.. Oscillation amplitude-controlled resonant accelerometer design using a reference tracking automatic gain control [J]. International Journal of Control, Automation, and Systems, 2009, 7(2):203-210.
CLAUDIA C, ALBERTO C, GIACOMO L, et al.. A resonant microaccelerometer with high sensitivity operating in an oscillating circuit [J]. Journal of Microelectromechanical Systems, 2010,19(5):1140-1151.
刘恒. 静电刚度谐振式微加速度计相关技术研究[D]. 重庆:重庆大学,2011. LIU H.Research on Micro Resonat Accelerometers Based on Electrostatic Stiffness [D].Chongqing:Chongqing University,2011.(in Chinese)
ZHAO S M, LIU Y F, WANG F, et al.. Research on non-linear vibration in micro-machined resonant accelerometer [C].Proceedings of the 14th Nanotech Conference, Washington,2012:637-640.
HE L. Silicon Micromachined Resonat Accelerometer with CMOS Interface Circuits [D].Sinapore:National University of Singapore,2008.
董景新,赵长德,熊沈蜀,等. 控制工程基础[M]. 北京:清华大学出版社,2009. DONG J X, ZHAO CH D, XIONG SH SH, et al.. Introduction to Control Engineering[M]. Beijing: Tsinghua University Press, 2009. (in Chinese)
HUANG L, CHEN W, NI Y, et al.. Structure design of micromechanical silicon resonant accelerometer[J]. Sensors and Materials, 2013,25(7):479-492.
0
浏览量
509
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构