浏览全部资源
扫码关注微信
1. 哈尔滨工业大学,黑龙江 哈尔滨,150001
2. 佳木斯大学,黑龙江 佳木斯,154007
收稿日期:2013-08-13,
修回日期:2013-10-21,
纸质出版日期:2014-06-25
移动端阅览
王宇春, 孙和义, 唐文彦等. 评定二次曲面轮廓度误差的角度分割逼近法[J]. 光学精密工程, 2014,22(6): 1606-1612
WANG Yu-chun, SUN He-yi, TANG Wen-yan etc. Angle subdivision approach algorithm for conicoid profile error evaluation[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1606-1612
王宇春, 孙和义, 唐文彦等. 评定二次曲面轮廓度误差的角度分割逼近法[J]. 光学精密工程, 2014,22(6): 1606-1612 DOI: 10.3788/OPE.20142206.1606.
WANG Yu-chun, SUN He-yi, TANG Wen-yan etc. Angle subdivision approach algorithm for conicoid profile error evaluation[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1606-1612 DOI: 10.3788/OPE.20142206.1606.
提出一种基于角度分割逼近算法和粒子群算法计算二次曲面轮廓度误差的最小区域评定方法来准确评定任意位姿的二次曲面轮廓度误差。首先,给出了能够实现角度分割逼近算法的两条前提假设;基于假设,给出了更合理的算法网格布局递推公式。根据曲面轮廓度误差的定义建立了误差评定的精确模型。然后,采用角度分割逼近法求取测点到拟合二次曲面轮廓的距离;通过粒子群算法,以所有的点与二次曲面距离中的最大值为适应度值拟合出二次曲面一般方程,并实现被测轮廓与理论轮廓位置的匹配。最后,采用上述方法对某抛物面天线进行了评定,并与参数分割法、SMX-Insight和最小二乘法进行比较。实验结果显示:该方法测得的天线轮廓度误差为0.659 8 mm,比其它方法准确。结论表明:基于角度分割算法能够更有效地评定任意位姿二次曲面轮廓度误差,计算准确、迅速,而且无需确定待分割区域。
A method based on angle subdivision approach algorithm and Particle Swarm Optimization (PSO) was proposed to evaluate concicoid profile error accurately in any position and orientation with the requirement of the minimal zone。 Two hypotheses were proposed to realize the angle subdivision approach algorithm. According to the hypotheses
a recursion formula for more reasonable girdding was given. Then
an accurate evaluating model was established according to the definition of conicoid profile error. The angle subdivision approach algorithm was adopted to calculate the distance between measurement points and fitting quadric surface. The position between measured profile and theoretical profile was matched through fitting the general quadric surface equation. A paraboloid antenna was evaluated by the above method in an experiment
and the results were compared with those of parameter subdivision approach algorithm
SMX-Insight and Least Square Method (LSM). Experimental results indicate that the profile error is 0.659 8 mm more accurate than that of other methods. The results show that angle subdivision approach algorithm is more efficient in concicoid profile error evaluation and its calculation is accurate
rapid
and no need to find the division area.
刘巽尔. 形状和位置公差原理与应用[M]. 北京:机械工业出版社,1999. LIU S E. Form and Position Tolerance: Principles and Application[M]. Beijing:Machinery Industry Press, 1999. (in Chinese)
任同群,赵悦含,龚春忠,等. 自由曲面测量的三维散乱点云无约束配准[J]. 光学 精密工程,2013,21(5):1234-1243. REN T Q,ZHAO Y H,GONG CH ZH,et al.. Unconstrained registration of 3-D scattered point clouds for free-form shape measurement[J].Opt. Precision Eng.,2013,21(5):1234-1243.(in Chinese)
罗钧,王强,付丽. 改进蜂群算法在平面度误差评定中的应用[J]. 光学 精密工程,2012,20(2):422-430. LUO J, WANG Q, FU L. Application of modified artificial bee colony algorithm to flatness error evaluation [J]. Opt. Precision Eng., 2012, 20(2):422-430.(in Chinese)
CHANGCAI C, RENSHENG C, DONG Y, et al.. Research on the minimum zone cylindricity evaluation based on genetic algorithms[J]. Chinese Journal of Mechanical Engineering.2003,16(2):167-170.
崔长彩,黄富贵,张认成,等. 粒子群优化算法及其在圆柱度误差评定中的应用[J]. 光学 精密工程,2006,14(2):256-260. CUI CH C, HUANG F G, ZHANG R CH, et al.. Research on cylindricity evaluation based on the Particle Swarm Optimization(PSO)[J]. Opt. Precision Eng., 2006,14(2):256-260.(in Chinese)
廖平,喻寿益. 基于归一化实数编码遗传算法的圆锥度误差计算[J]. 仪器仪表学报,2004,25(3):395-398. LIAO P, YU SH Y. Calculating of cone error based on genetic algorithms with canonicity real number encoding [J]. Chinese Journal of Scientific Instrument, 2004,25(3):395-398.(in Chinese)
罗钧,王强,付丽. 改进蜂群算法在平面度误差评定中的应用[J]. 光学 精密工程,2012,20(2):422-429. LUO J,WANG Q,FU L.Application of modified artificial bee colony algorithm to flatness error evaluation[J].Opt. Precision Eng.,2012,20(2):422-429.(in Chinese)
雷贤聊,李飞,涂鲜萍,等. 评定平面度误差的几何搜索逼近算法[J]. 光学 精密工程,2013,21(5):1312-1316. LEI X Q,LI F,TU X P,et al..Geometry searching approximation algorithm for flatness evaluation[J].Opt. Precision Eng.,2013,21(5):1312-1316.(in Chinese)
温秀兰,赵艺兵,王东霞,等. 改进遗传算法与拟随机序列结合评定自由曲线轮廓度误差[J]. 光学 精密工程,2012,20(4):835-842. WEN X L,ZHAO Y B,WANG D X,et al..Evaluating freeform curve profile error based on improved genetic algorithm and quasi random sequence[J].Opt. Precision Eng.,2012,20(4):835-842.(in Chinese)
廖平. 基于粒子群算法和分割逼近法的复杂曲面轮廓度误差计算[J]. 中国机械工程,2010,21(2):201-205. LIAO P. Calculation of complex surface profile errors based on hybrid particle swarm optimization algorithm [J]. Chinese Journal of Mechanical Engineering, 2010,21(2):201-205. (in Chinese)
廖平. 基于遗传算法的椭球面形状误差精确计算[J]. 仪器仪表学报,2009,30(4):780-785. LIAO P. Calculation of elliptic sphere form error based on genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2009,30(4):780-785.(in Chinese)
郭慧,林大钧. 基于微粒群算法的复杂曲面轮廓度误差计算[J]. 东华大学学报:自然科学版,2008,34(3):274-277. GUO H, LIN D J. Profile error computation of complicated surface based on particle swarm optimization [J]. Journal of Donghua University:Natural Science,2008,34(3):274-277.(in Chinese)
郭慧, 潘家祯. 基于微粒群算法的叶片曲面形状误差评定[J]. 华东理工大学学报:自然科学版,2008,34(5):769-772. GUO H, PAN J ZH. Form error evaluation of cured blade surface based on particle swarm optimization [J]. Journal of East China University of Science and Technology:Natural Science Edition,2008,34(5):769-772.(in Chinese)
0
浏览量
877
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构