浏览全部资源
扫码关注微信
南昌工程学院 信息工程学院,江西 南昌,330099
收稿日期:2013-10-16,
修回日期:2013-11-19,
纸质出版日期:2014-06-25
移动端阅览
邓承志, 田伟, 汪胜前等. 近似稀疏正则化的红外图像超分辨率重建[J]. 光学精密工程, 2014,22(6): 1648-1654
DENG Cheng-zhi, TIAN Wei, WANG Sheng-qian etc. Super-resolution reconstruction of approximate sparsity regularized infrared images[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1648-1654
邓承志, 田伟, 汪胜前等. 近似稀疏正则化的红外图像超分辨率重建[J]. 光学精密工程, 2014,22(6): 1648-1654 DOI: 10.3788/OPE.20142206.1648.
DENG Cheng-zhi, TIAN Wei, WANG Sheng-qian etc. Super-resolution reconstruction of approximate sparsity regularized infrared images[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1648-1654 DOI: 10.3788/OPE.20142206.1648.
针对红外图像分辨率低、受噪声影响严重等问题,引入近似稀疏正则化和K-奇异值分解(K-SVD)法,提出了基于近似稀疏表示模型的红外图像超分辨率重建方法。考虑到红外图像受到噪声污染,首先建立了稳健近似稀疏表示模型。针对已有字典训练方法时间消耗巨大问题,在假定低分辨率图像空间和高分辨率图像空间具有相似流形的前提下,联合近似稀疏表示模型和K-SVD方法,提出近似稀疏约束的基于K-SVD的高低分辨率字典对学习算法。最后,通过高分辨字典和对应的红外图像群稀疏表示系数重建得到高分辨率的红外图像。为了验证算法的性能,对提出的算法与稀疏性正则化的图像超分辨模型(SRSR)和Zeyde算法进行了实验比较。结果表明,本文方法能够较好地减少红外图像中的噪声,同时获得更好的超分辨率重建效果。
For the problems of low-resolution and serious effect from noises of infrared images
an approximate sparsity regularized infrared image super-resolution reconstruction algorithm (ASSR) based on K-SVD (Singular Value Decomposition) was proposed. In consideration of the noise effect from infrared images
an approximate sparsity representation model was first established. On the assumption that the low and high resolution image spaces hold a similar manifold
an approximate sparsity regularized K-SVD based dictionary learning method was proposed with approximate sparsity model and K-SVD method to solve the time-consuming problem of existing dictionary training process. Finally
the high-resolution infrared images were recovered by the high-resolution dictionary and the corresponding low-resolution group sparse coefficients. To verify the performance of the algorithm proposed
it was compared with those of the Sparsity Regularized Super-Resolution Reconstruction (SRSR) and Zeyde algorithm. Experimental results show that the proposed method can reduce the noises of infrared images
and can obtain excellent performance in super-resolution reconstruction.
KANG M, CHAUDHURI S. Super-resolution image reconstruction [J]. IEEE Signal Processing Magazine, 2003,20(3):1920-1935.
邓建青,刘晶红,刘铁军. 基于DSP系统的超分辨率图像重建技术研究[J]. 液晶与显示,2012,27(1):114-120. DENG J Q, LIU J H, LIU T J. Super-resolution image reconstruction technology based on DSP system [J]. Chinese Journal of Liquid Crystals and Displays, 2012,27(1):114-120. (in Chinese)
FARSIU S, ROBINSON D, ELAD M, et al.. Advances and challenges in super-resolution [J]. International Journal of Imaging Systems and Technology, 2004, 14(2): 47-57.
ELAD M, DATSENKO D. Example-based regularization deployed to super-resolution reconstruction of a single image [J]. The Computer Journal, 2007, 50(4):1-16.
ELAD M, FIGUEIREDO M A T, MA Y. On the role of sparse and redundant representation in image processing [J]. Proceedings of the IEEE - Special Issue on Applications of Sparse Representation and Compressive Sensing, 2010, 98(6): 972-982.
穆治亚,魏仲慧,何昕,等. 采用稀疏表示的红外图像自适应杂波抑制[J]. 光学 精密工程,2013,21(7):1850-1857. MU ZH Y, WEI ZH H, HE X, et al.. Adaptive clutter suppression of infrared images by using sparse representation [J]. Opt. Precision Eng., 2013,21(7):1850-1857. (in Chinese)
邓承志,刘娟娟,汪胜前,等. 保留结构特征的稀疏正则化图像修复[J]. 光学 精密工程,2013,21(7):1906-1913. DENG CH ZH, LIU J J, WANG SH Q,et al.. Feature retained image inpainting based on sparsity regularization [J]. Opt. Precision Eng., 2013,21(7):1906-1913. (in Chinese)
匡金骏,柴毅,熊庆宇. 结合标准对冲与核函数稀疏分类的目标跟踪[J]. 光学 精密工程,2012,20(11):2540-2547. KUANG J J, CHAI Y, XIONG Q Y. Visual object tracking combined normal hedge and kernel sparse representation classification [J]. Opt. Precision Eng., 2012,20(11):2540-2547. (in Chinese)
YAND J, WRIGHT J, HUANG T. Image super-resolution via sparse representation [J]. IEEE Transactions On Image Processing, 2010, 19(11): 2861-2873.
练秋生, 张伟. 基于图像块分类稀疏表示的超分辨率重构算法 [J]. 电子学报, 2012, 40(5): 920-925. LIAN Q SH, ZHANG W. Image super-resolution algorithms based on sparse representation of classified image patches [J]. Acta Electronica Sinica, 2012, 40(5):920-925. (in Chinese)
YANG S Y, WANG M, CHEN Y G, et al.. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding [J]. IEEE Transactions On Image Processing, 2012, 21(9):4016-4028.
TANG Y, YUAN Y, YAN P K, et al.. Greedy regression in sparse coding space for single-image super-resolution [J]. J. Vis. Commun. Image R., 2013, 24(2):148-159.
CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurement [J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
王军华, 黄知涛, 周一宇,等. 基于近似l0范数的稳健稀疏重构算法 [J]. 电子学报, 2012, 40(6): 1185-1189. WANG J H, HUANG ZH T, ZHOU Y Y,et al.. Robust sparse recovery based on approximate l0 Norm [J]. 2012, 40(6): 1185-1189.
AHARON M, ELAD M, BRUCKSTEIN A M. K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
ZEYDE R, ELAD M, PROTTER. On single image scale-up using sparse representation [C]. Proceedings of the 7th International Conference on Curves & Surfaces, Avignon, France,2010:711-730.
BRUNET D, VRSCAY E R, WANG Z. On the mathematical properties of the structural similarity index [J]. IEEE Transactions on Image Processing, 2012, 21(4): 1488-1499.
0
浏览量
333
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构