浏览全部资源
扫码关注微信
北京航空航天大学 仪器科学与光电工程学院 北京航空航天大学惯性技术重点实验室 北京,100191
收稿日期:2013-12-07,
修回日期:2014-01-25,
纸质出版日期:2014-07-25
移动端阅览
楚中毅, 孙晓光, 万双爱等. 无自旋交换弛豫原子磁强计的主动磁补偿[J]. 光学精密工程, 2014,22(7): 1808-1813
CHU Zhong-yi, SUN Xiao-guang, WAN Shuang-ai etc. Active magnetic compensation of spin-exchange-relaxation-free atomic magnetometer[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1808-1813
楚中毅, 孙晓光, 万双爱等. 无自旋交换弛豫原子磁强计的主动磁补偿[J]. 光学精密工程, 2014,22(7): 1808-1813 DOI: 10.3788/OPE.20142207.1808.
CHU Zhong-yi, SUN Xiao-guang, WAN Shuang-ai etc. Active magnetic compensation of spin-exchange-relaxation-free atomic magnetometer[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1808-1813 DOI: 10.3788/OPE.20142207.1808.
由于外界磁场扰动会降低无自旋交换弛豫(SERF)原子磁强计的磁场测量灵敏度,本文根据SERF原子磁强计的测量原理,提出了一种基于原位磁测补偿外部磁场扰动的方法。该方法通过调制解调的方法对3个方向的磁场进行解耦,实现3个方向磁场信息的独立测量。然后,将3个方向磁场的测量信息作为反馈,调节电流源输出给线圈的电流,使线圈产生一个与外界扰动磁场大小相同方向相反的补偿磁场。最后,在现有的SERF原子磁强计实验平台上搭建了主动磁补偿系统,实现了对外部扰动磁场的补偿。与手动补偿方式相比,本文提出的主动磁补偿方法可将剩余磁场的平均值从0.317 8 nT降低到0.040 4 nT,同时将剩余磁场的均方差由0.348 1 nT降低到0.024 7 nT。得到的实验结果验证了本文所述方法的有效性。
As the measuring sensitivity of a Spin-Exchange-Relaxation-Free(SERF) atomic magnetometer will be reduced when it is suffered from the disturbance by environment magnetic field.Therefore
according to the measuring principle of the SERF atomic magnetometer
this paper proposes a active magnetic compensation method for the external magnetic field disturbance based on in-situ magnetic measurement.Firstly
a modem was used to decouple the magnetic field in three directions to achieve the magnetic information of the three axes.Then
the measuring information from three directions was taken as a feedback to adjust the current of coil to generate a magnetic field which is opposite and equal to the disturbance.Finally
an active magnetic compensation system for SERF atomic magnetometer was built to compensate the magnetic disturbance in real time.Compared with the manual compensation method
the proposed method reduces the surplus magnetic field from 0.317 8 nT to 0.040 4 nT
and the mean square error from 0.348 1 nT to 0.024 7 nT.The experimental results validate the efficiency of the active magnetic compensation method.
BUDKER D,ROMALIS M. Optical magnetometry[J]. Nature Physics,Apr. ,2007,3(4):227-234.
张昌达,董浩斌. 量子磁力仪评说[J]. 工程地球物理学报,2004,1(6):499-508. ZHANG CH D,DONG H B. A review of quantum magnetometers[J]. Chinese Journal of Engineering Geophysics,2004,1(6):499-508. (in Chinese)
张昌达. 量子磁力仪研究和开发近况[J]. 物探与化探,2005,29(4):283-287 ZHANG CH D. Recent advances in the research and development of quantum magnetometers[J]. Geophysical & Geochemical Exploration,2005,29(4):283-287. (in Chinese)
SCHWINDT P,JOHNSON C N. Atomic magneto-meter for human magnetoencephalograpy. Sandia National Laboratories,2010.
叶萍,张炎华,翟传润. 磁干扰误差补偿算法在舰船及水下航向测量技术中的应用[J]. 上海交通大学学报,2010,44(9):1297-1301. YE P,ZHANG Y H,ZHAI CH R. Geomagnetism compensation based on disturbance analysis for shipboard and underwater attitude determenation[J]. Journal of Shanghai Jiaotong University,2010,44(9):1297-1301. (in Chinese)
WYLLIE R,KAUER M,SMETANA G S,et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine and Biology,2012,57(9):2619-2632.
FANG J,QIN J,WAN S,et al. Atomic spin gyroscope based on 129Xe-Cs comagnetometer[J]. Chinese Science Bulletin,2012:1512-1515.
LEDBETTER M P,SAVUKOV I M,ACOSTA V M,et al. Spin-exchange-relaxation-free magneto-metry with Cs vapor[J]. Physical Review A,2008,77(3):033408:1-7.
NELSON I A. Physics of Practical Spin-Exchange Optical Pumping. Whsconsin:University of Whsconsin- Madison,2001.
KOMINIS I,KORNACK T,ALLRED J,et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature,2003,422(6932):596-599.
秦杰. 基于129Xe-Cs的SERF原子自旋陀螺仪原理实验研究. 北京:北京航空航天大学,2012. QIN J. Experimental Development of SERF Atomic Spin Gyroscope based on129Xe-Cs. Beijing:Beihang University,2012. (in Chinese)
TAKAYOSHI K. 利用激光实时频谱直接观测分子结构变化[J]. 光学精密工程,2011,19(2):200-212. TAKAYOSHI K. Direct observation of molecular structural change during intersystem crossing by real-time spectroscopy with a few optical cycle lasers[J]. Opt. Precision Eng. ,2011,19(2):200-212. (in English)
赵智亮,夏伯才,陈立华,等. 相移干涉测量中相移误差的自修正[J]. 光学精密工程,2013,21(5):1116-1121. ZHAO ZH L,XIA B C,CHEN L H,et al. Self-correction of phase step error in phase shifting interferometric measurement[J]. Opt. Precision Eng. ,2013,21(5):1116-1121. (in Chinese)
李秀明,黄战华,朱猛. 扩展光束型激光多普勒速度测量系统[J]. 光学精密工程,2013,21(5):1102-1109. LI X M,HUANG ZH H,ZHU M. Differential laser Doppler system with expanded beams for velocity measurement[J]. Opt. Precision Eng. ,2013,21(5):1102-1109. (in Chinese)
QIN J,WAN S,CHEN Y,et al. Ultrahigh sensitive magnetic field and rotation measurement with atomic spin[J]. Science,2012,338(6104):274:101-102.
ALLRED J C,LYMAN R,N. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Revies Letters,2002,89(13):1-4.
KORNACK T W. A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer. Princeton:Princeton University,2005.
SELTZER S J. Developments in Alkali- metal Atomic Magnetometry. Princeton:Princeton University,2008.
杨生元,黄文浩. 激光光强分布对原子力显微镜中光学偏转法检测结果的影响[J]. 光学精密工程,1997,5(1):125-132. YANG SH Y,HUANG W H. Influence of distribution of light intensity of laser source on detecting results of optic-deflection detecting in atomic force microscope[J]. Opt. Precision Eng. ,1997,5(1):125-132. (in Chinese)
0
浏览量
211
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构