浏览全部资源
扫码关注微信
1. 吉林大学 机械科学与工程学院,吉林 长春,中国,130025
2. 吉林大学 珠海学院 机电工程系,广东 珠海,519041
收稿日期:2014-01-20,
修回日期:2014-02-25,
纸质出版日期:2014-07-25
移动端阅览
沈燕虎, 苏江, 杨志刚等. 压电驱动式振动给料器的设计与试验[J]. 光学精密工程, 2014,22(7): 1828-1833
SHEN Yan-hu, SU Jiang, YANG Zhi-gang etc. Design and experiment of piezoelectric-drive vibratory feeder[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1828-1833
沈燕虎, 苏江, 杨志刚等. 压电驱动式振动给料器的设计与试验[J]. 光学精密工程, 2014,22(7): 1828-1833 DOI: 10.3788/OPE.20142207.1828.
SHEN Yan-hu, SU Jiang, YANG Zhi-gang etc. Design and experiment of piezoelectric-drive vibratory feeder[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1828-1833 DOI: 10.3788/OPE.20142207.1828.
为了实现对轻、薄、小产品的平稳输送,利用圆形压电双晶片作为振动给料器的动力源,Z型弹簧片作为主振弹簧,并基于系统共振方法设计了新型压电驱动式振动给料器。介绍了圆形压电双晶片驱动式振动给料器的工作原理,建立了动力学模型,获得了系统固有频率表达式;分析了压电双晶片的振动模态,确定了一阶振型为工作振型。研制了振动给料器样机,利用样机测试了电压、频率与送料速度的特性曲线以及主振弹簧片角度对送料速度、送料稳定性、送料噪声的影响规律。试验结果表明:电压为150 V,频率为142 Hz时,输送电池帽的速度为8.5 battery cap/s;频率为136~148 Hz时,系统具备输送物料的能力,共振条件下(142 Hz)输送速度最快;随着电压的升高,输送速度呈线性增加;输送的单体物料质量增加时,主振弹簧片安装角度宜变小。
To convey light
thin and small products stably
a piezoelectric vibratory feeder with the
Z
leaf spring actuated by a round piezoelectric bimorph was developed base on the working principle of systemic resonance.The working principles of the vibratory feeder driven by a circular piezoelectric vibrator were introduced
the expression of natural frequency was obtained by establishing the dynamic model of the vibratory feeder
and the first order mode shape was defined as the working mode shape after analysis of the vibratory modal.Then
a prototype of the vibratory feeder was developed.Finally
the relations among voltage
frequency and feeding rate were measured
and the influences of the angle of leaf spring on feeding rates
stability and noise were explored.The experimental results show that the feeding rate of the vibratory feeder is 8.5 battery caps per second when the voltage is 150 V and the frequency is 142 Hz.The vibratory feeder can convey the products when the working frequency is from 136 Hz to 148 Hz
and the best feeding rate is at the resonance frequency(142 Hz).Moreover
the feeding rate increases linearly with the driving voltage.As the mass of the conveying parts increases
the installation angle of the main vibrating spring decreases.
苏江. 振动送料器的现状及发展趋势[J]. 机械设计与制造,2010(7):244-246. SU J. Current status and development trends of vibration feeder[J]. Machinery Design & Manufacture,2010(7):244-246. (in Chinese)
VILAN J A,ROBLEDA A S,PLACER C C,et al. Approximation to the dynamics of transported parts in a vibratory bowl feeder[J]. Mechanism and Machine Theory,2009,44 (12):2217-2235.
姜斌,刘晓论,杨志刚,等. 垂直驱动型超声波送料器的研究[J]. 光学精密工程,2008,16(6):1082-1086. JIANG B,LIU X L,YANG ZH G,et al. Study on vertical drive ultrasonic feeder[J]. Opt. Precision Eng. ,2008,16(6):1082-1086. (in Chinese)
特殊陶业株式会社. 压电振动搬送装置:日本,52-61087. 1977. NGK SPARK PLUG Co.,Ltd. Piezoelectric Vibratory Conveying Device:Japan,52-61087. 1977. (in Japanese)
CHOI S B,LEE D H. Modal analysis and control of a bowl parts feeder activated by piezoelectric actuators[J]. Journal of Sound and Vibration,2004,275(1):452-458.
CHANG S H,YANG T W. Dynamics of a piezoe-lectrically actuated vibratory feeder. Proceedings of the 26th International Conference on Biennial mechanisms and robotics,Maryland,USA:ASME,2000:341-348.
YUNG,SHIN M,CHANG H. Analysis and design of four-bar linkage type vibratory parts feeder driven by piezoelectric actuator. Proceeding of the 28th International Conference on Design Automation,Quebec:ASME,2002:43-50.
谭晓东,张坤,李东明,等. 斜拉式压电振动给料器的数值分析与实验研究[J]. 机械科学与技术,2012,31(7):144-147 TAN X D,ZHANG K,LI D M,et al. Experiment research and numerical analysis on a new piezoelectric vibration feeder[J]. Mechanical Science and Technology for Aerospace Engineering,2012,31(7):144-147. (in Chinese)
HAN L,GAO J X. A Study on the modelling and simulation of part motion in vibratory feeding[J]. Applied Mechanics and Materials,2010,34-35(10):2006-2010.
MUCCHI E,GREGORIO R D,DALPIAZ D. Elasto-dynamic analysis of vibratory bowl feeders:Modeling and experimental validation[J]. Ultrasonics,2013,60(2):60-72.
田忠静,吴文福. 压电振动送料装置的研究现状及其应用[J]. 机械设计与制造,2011(11):54-56. TIAN ZH J,WU W F. Research status and application of piezoelectric vibratory feeder device[J]. Machinery Design & Manufacture,2011(11):54-56. (in Chinese)
CHAO P C,SHEN C Y. Dynamic modeling and experimental verification of a piezoelectric part feeder in a structure with parallel bimorph beams[J]. Ultrasonics,2007,46(3),205-218.
HU,Z,MAUL,G P,FARSON D. Piezo actuated vibratory feeding with vibration control[J]. International Journal of Production Research,2007,45(5):1089-1100.
WANG Y,WU W F,SHI S P. Research on the mechanism of multi-source piezoelectric vibratory feeder[J]. Applied Mechanics and Materials,2013,241 (12):1427-1430.
TAKYO Y,KOIZUMI K,SAITO T,et al. Study on vibratory linear micro-feeder[J]. Journal of the Japan Society for Precision Engineering,2008,74(5):474-479.
TAN X D,ZHAO Y S,LIU C B,et al. The analysis and experiment study on a new driving structure of piezoelectric vibration feeder[J]. Advances in Mechanical Design,2011,199(2):1107-1112.
0
浏览量
85
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构