浏览全部资源
扫码关注微信
1. 燕山大学 河北省并联机器人与机电系统实验室,河北 秦皇岛,066004
2. 燕山大学 先进锻压成形技术与科学教育部重点实验室,河北 秦皇岛,066004
收稿日期:2014-01-20,
修回日期:2014-02-27,
纸质出版日期:2014-07-25
移动端阅览
姚建涛, 李立建, 杨维等. 直圆柔性球铰柔度矩阵的解析计算[J]. 光学精密工程, 2014,22(7): 1857-1863
YAO Jian-tao, LI Li-jian, YANG Wei etc. Analytical calculation of compliance matrix for right-circular flexure spherical hinge[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1857-1863
姚建涛, 李立建, 杨维等. 直圆柔性球铰柔度矩阵的解析计算[J]. 光学精密工程, 2014,22(7): 1857-1863 DOI: 10.3788/OPE.20142207.1857.
YAO Jian-tao, LI Li-jian, YANG Wei etc. Analytical calculation of compliance matrix for right-circular flexure spherical hinge[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1857-1863 DOI: 10.3788/OPE.20142207.1857.
基于线弹性和小变形假设理论,通过引入比例系数(直圆柔性球铰槽口间距与切割半径倍数之比)并利用其结构对称的特点,推导得到了形式较为简洁的直圆柔性球铰柔度矩阵各子元素的解析柔度计算公式。利用有限元仿真软件验证了所推公式的正确性,并绘制了相应的误差曲线。结果表明:当比例系数小于0.2时,直圆柔性球铰各柔度计算公式的相对误差限均在11%以内;随着比例系数的增加,除沿
x
向的拉压柔度
C
11
误差较小外,其他柔度计算公式的误差均呈增加的趋势,最大误差为30%。实验结果显示理论分析与仿真结果基本趋于一致,验证了直圆柔性球铰各柔度解析式的正确性。本文的研究内容为直圆柔性球铰在实际应用中的结构设计和参数优化奠定了理论基础。
On the basis of hypothesis theories of linear elasticity and small deformation
the analytical compliance calculation formula of each sub-element in the compliance matrix of a right-circular flexure spherical hinge was deduced.The formula is succinct in form by introducing the proportional coefficient (The ratio of right-circular flexure spherical hinge groove spacing and double cutting radius) and utilizing the symmetrical feature of the structure.The correctness of the formula was verified by adopting the finite element simulation software
and its error curves were drawn corresponding to the simulated values.The results show that the relative errors of serial compliance calculation formula for the right-circular flexure spherical hinge are within 11% when the proportional coefficient is less than 0.2.With the increase of the proportional coefficient
the errors of the other compliance calculation formulas have a trend of increasing with maximum of 30% except the error of tension and compression compliance
C
11
along the direction
x
.The experimental results show that the theoretical analysis is in agreement with the simulation results
which verifies the correctness of the proposed formula.These results will lay a key theoretical basis for the structural design and parametric optimization of the right-circular flexure spherical hinges in practical applications.
胡俊峰,张宪民. 3自由度精密定位平台的运动特性和优化设计[J]. 光学精密工程,2012,20(12): 2686-2695. HU J F,ZHANG X M. Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Opt. Precision Eng. ,2012,20(12):2686-2695. (in Chinese)
YONG Y K,LU T F. Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges[J]. Mechanism and Machine Theory,2009,44:1156-1175.
刘庆玲. 柔性对称微位移放大机构的分析与仿真[J]. 工程力学,2011,28(6):231-235. LIU Q L. Analysis and simulation of the compliant symmetrical micro-displacement amplification mechanism[J]. Engineering Mechanics,2011,28(6):231-235. (in Chinese)
LIANG Q K,ZHANG D,CHI ZH ZH,et al. Six-DOF micro-manipulator based on compliant parallel mechanism with intergrated force sensor[J]. Robotics and Computer-Integrated Manufacturing,2011,27:124-134.
王乐峰,荣伟彬,孙立宁. 三支链六自由度并联柔性铰微动机器人的研究[J]. 光学精密工程,2007,15(4):529-534. WANG L F,RONG W B,SUN L N. Research on a three-link six-DOF micromanipulator with flexure hinges[J]. Opt. Precision Eng. ,2007,15(4):529-534. (in Chinese)
LOBONTIU N. Compliant Mechanisms:Design of Flexure Hinges[M]. London:CRC Press,2003.
TIAN Y,SHIRINZADEH B,ZHANG D. Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design[J]. Precision Engineering,2010,34(3):408-418.
陈桂敏,刘小院,贾建援. 椭圆柔性铰链的柔度计算[J]. 机械工程学报,2006,42(增刊):111-115. CHEN G M,LIU X Y,JIA J Y. Compliance calculation of elliptical flexure hinge[J]. Chinese Journal of Mechanical Engineering,2006,42(Suppl):111-115. (in Chinese)
陈桂敏,韩琪. 深切口椭圆柔性铰链[J]. 光学精密工程,2009,17(3):570-575. GHEN G M,HAN Q. Deep-notch elliptical flexure hinges[J]. Opt. Precision Eng. ,2009,17(3):570-575. (in Chinese)
张景柱,徐诚,赵彦峻. 新型柔性铰链的柔度计算[J]. 工程力学,2008,25(11):27-32. ZHANG J ZH,XU CH,ZHAO Y J. Compliance calculation of a novel flexure hinge[J]. Engineering Mechanics,2008,25(11):27-32. (in Chinese)
曹锋,焦宗夏. 双轴椭圆柔性铰链的设计计算[J]. 工程力学,2007,24(4):178-182. CAO F,JIAO Z X. Design of double-axis elliptical flexure hinges[J]. Engineering Mechanics,2007,27(7):178-182. (in Chinese)
王纪武,陈恳,李嘉. 典型柔性铰链的结构参数对其刚度性能影响的研究[J]. 机器人,2001,23(1):51-57. WANG J W,CHEN K,LI J. Study of geometrical parameters of typical flexible hinges' influence on its rigidity[J]. Robot,2001,23(1):51-57. (in Chinese)
朱仁胜,沈建,谢祖强,等. 双轴柔性铰链柔度的设计计算[J]. 合肥工业大学学报:自然科学版,2009,32(9):1370-1373. ZHU R SH,SHEN J,XIE Z Q,et al. Design calculation of double-axis flexure hinges[J]. Journal of Heifei University of technology,2009,32(9):1370-1373. (in Chinese)
0
浏览量
70
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构