浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2013-07-26,
修回日期:2013-09-24,
纸质出版日期:2014-07-25
移动端阅览
马喜强, 宋喜佳, 刘维亚等. 非平稳服务请求下的功耗管理[J]. 光学精密工程, 2014,22(7): 1929-1937
MA Xi-qiang, Song Xi-jia, LIU Wei-ya etc. Power-aware management for non-stationary service requests[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1929-1937
马喜强, 宋喜佳, 刘维亚等. 非平稳服务请求下的功耗管理[J]. 光学精密工程, 2014,22(7): 1929-1937 DOI: 10.3788/OPE.20142207.1929.
MA Xi-qiang, Song Xi-jia, LIU Wei-ya etc. Power-aware management for non-stationary service requests[J]. Editorial Office of Optics and Precision Engineering, 2014,22(7): 1929-1937 DOI: 10.3788/OPE.20142207.1929.
针对嵌入式系统的多任务环境,提出了混合模型功耗管理算法,用于对服从一般分布的系统进行建模。首先,介绍了现有的动态功耗管理策略算法,阐述了算法需要改进的原因。然后,使用重标极差法(Rescaled Range Analysis,R/S)对非平稳服务请求下的时间序列进行长距离相关性分析;根据不同的分析结果选择相应的最大概率策略,即基于电池剩余电量的超时策略、模糊非标准PID策略和半Markov随机策略。最后,给出了策略参数的确定方法并通过实验的方法对本文提出的策略进行分析。实验结果表明,本文策略弥补了常规动态电源管理策略的不足,具有更广泛的适应性;在性能损失10%的条件下,系统平均功耗减少了37%,命中率大于60%,更稳定、有效地降低了功耗,有利于在嵌入式系统中应用。
For multitasking environment of an embedded system
an improved method called hybrid model for power management algorithm was proposed for modeling of system with general distribution.First
the dynamic power management strategy algorithm was introduced
and the reason why it needed to be improved was expounded.Then
the Rescaled Range Analysis(R/S)method was used to analyze the long distance correlation of non-stationary time service requests and the corresponding strategy was selected depending on the different results.These strategies are remaining battery power timeout strategy
fuzzy not quite PID strategy and semi-Markov random strategy.Finally
the method for determining the strategy parameters was given and the strategy proposed in this paper was analyzed experimentally.The experimental results show that this strategy makes up for the deficiency of conventional dynamic power management strategy and has more extensive adaptability.Under the condition of 10% performance loss
the average system power consumption is reduced by 37%
and the hit rate is more than 60%.The algorithm reduces power consumption more efficiently than other methods
and is applicable in embedded systems.
GROVER P,WOYACH K,SAHAI A. Towards a communication-theoretic understanding of system-level power consumption[J]. IEEE Journal on Selected Areas in Communications,2011,29(8):1744-1755.
朱尧,赵龙彪,韩东,等. 基于图像分类的全局调光算法的FPGA实现[J]. 液晶与显示,2013,28(5):742-746. ZHU Y,ZHAO L B,HAN D,et al. FPGA implementation of global dimming algorithm based on image classification[J]. Chinese Journal of Liquid Crystals and Displays,2013,28(5):742-746. (in Chinese)
商广良,赵天月,赵星星,等. 低功耗TFT-LCD驱动方法[J]. 液晶与显示,2012,27(6):785-788. SHANG G L,ZHAO T Y,ZHAO X X,et al. Driving method for low power consumption in TFT-LCDs[J]. Chinese Journal of Liquid Crystals and Displays,2012,27(6):785-788. (in Chinese)
CHANDRA S,LAHIRI K,RAGHUNATHAN A,et al. Variation-tolerant dynamic power management at the system-level[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2009,17(9):1220-1232.
SALVADORI F,DE CAMPOS M,SAUSEN P S,et al. Monitoring in industrial systems using wireless sensor network with dynamic power management[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(9):3104-3111.
曹哲,尤政. 超时策略动态阈值的阈值选择影响因素[J]. 哈尔滨工业大学学报,2013,45(6):119-123. CAO ZH,YOU ZH. The influencing factor of threshold selection in dynamic threshold of timeout policies[J]. Journal of Harbin Institute of Technology,2013,45(6):119-123. (in Chinese)
潘钰. 云计算平台中的能耗管理方法. 南京:南京邮电大学,2013. PAN Y. Policy of energy management for cloud computing platform. Nanjing:Nanjing University of Posts and Telecommunications,2012.
RODGERS S,BETANCOURT C,KEE E,et al. Integrated power recovery using Markov modeling[J]. Journal of Engineering for Gas Turbines and Power,2011,133(11):114506-114510.
CHUNG E Y,BENINI L,BOGLIOLO A,et al. Dynamic power management for nonstationary service requests. Design,Automation,and Test in Europe, Springer Netherlands,2008:195-206.
LUIZ S O D,PERKUSICH A,LIMA A M N. Multisize sliding window in workload estimation for dynamic power management[J]. IEEE Transactions on Computers,2010,59(12):1625-1639.
LI M,WU X,YAO R,et al. Q-DPM:an efficient model-free dynamic power management technique. Design,Automation and Test in Europe,2005, Proceedings, IEEE,2005:526-527.
IRANI S,SHUKLA S,GUPTA R. Online strategies for dynamic power management in systems with multiple power-saving states[J]. ACM Transactions on Embedded Computing Systems (TECS),2003,2(3):325-346.
LEE W K,LEE S W,SIEW W O. Hybrid model for dynamic power management[J]. IEEE Transactions on Consumer Electronics,2009,55(2):656-664.
SRIVASTAVA M B,CHANDRAKASAN A P,BRODERSEN R W. Predictive system shutdown and other architectural techniques for energy efficient programmable computation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,1996,4(1):42-55.
万丽,邓小成,王庆飞,等. 基于Hurst指数的矿化强度识别[J]. 吉林大学学报:地球科学版,2013,43(1):87-92. WAN L,DENG X CH,WANG Q F,et al. Identification of mineral intensity based on Hurst[J]. Journal of Jilin University:Earth Science Edition,2013,43(1):33-42.
马喜强,刘维亚,郑喜凤,等. 非平稳多任务下的动态功耗管理随机策略[J]. 吉林大学学报:工学版,2014,44(3):776-781. MA X Q,LIU W Y,ZHENG X F,et al. Dynamic power management stochastic policy for non-stationary multi-task[J]. Journal of Jilin University Engineering and Technology Edition,2014,44(3):776-781. (in Chinese)
CHOI S,CHA H,HA R. A selective dvs technique based on battery residual[J]. Microprocessors and Microsystems,2006,30(1):33-42.
MANWELL J F,MCGOWAN J G. Lead acid battery storage model for hybrid energy systems[J]. Solar Energy,1993,50(5):399-405.
MARTIN T L,SIEWIOREK D P. Balancing batteries,power,and performance:system issues in CPU speed-setting for mobile computing. Department of Electrical and Computer Engineering,Carnegie Mellon University,1999.
DOUGLIS F,KRISHNAN P,BERSHAD B. Adaptive disk spin-down policies for mobile computers[J]. Computing Systems,1995,8(4):381-413.
VARMA A,GANESH B,SEN M,et al. A control-theoretic approach to dynamic voltage scheduling. Proceedings of the 2003 International Conference on Compilers,Architecture and synthesis for embedded systems. ACM,2003:255-266.
李佳. 模糊自整定PID控制在过热汽温控制系统中的研究与应用. 哈尔滨:哈尔滨理工大学,2012. LI J. Study and application of the fuzzy self-tuning PID control in superheated steam temperature system. Harbin:Harbin University of Science and Technology,2012. (in Chinese)
江琦,奚宏生,殷保群. 动态电源管理的随机切换模型与策略优化[J]. 计算机辅助设计与图形学学报,2006,18(5):680-686. JIANG Q,XI H SH,YIN B Q. Stochastic switching model and policy optimization for dynamic power management[J]. Journal of Computer-aided Design & Computer Graphics,2006,18(5):680-686. (in chinese)
HWANG C H,WU A C H. A predictive system shutdown method for energy saving of event-driven computation[J]. ACM Transactions on Design Automation of Electronic Systems (TODAES),2000,5(2):226-241.
BENINI L,BOGLIOLO A,PALEOLOGO G A,et al. Policy optimization for dynamic power management[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1999,18(6):813-833.
0
浏览量
82
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构