浏览全部资源
扫码关注微信
1. 华南理工大学 机械与汽车工程学院,广东 广州,510640
2. 北京大学第三医院 运动医学研究所 北京,100083
收稿日期:2014-01-27,
修回日期:2014-03-05,
纸质出版日期:2014-08-25
移动端阅览
宋长辉, 杨永强, 张曼慧等. 基于数字化3D技术的股骨假体再设计与激光选区熔化制造[J]. 光学精密工程, 2014,22(8): 2117-2126
SONG Chang-hui, YANG Yong-qiang, ZHANG Man-hui etc. Redesign and selective laser melting manufacturing of femoral component based on digital 3D technology[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2117-2126
宋长辉, 杨永强, 张曼慧等. 基于数字化3D技术的股骨假体再设计与激光选区熔化制造[J]. 光学精密工程, 2014,22(8): 2117-2126 DOI: 10.3788/OPE.20142208.2117.
SONG Chang-hui, YANG Yong-qiang, ZHANG Man-hui etc. Redesign and selective laser melting manufacturing of femoral component based on digital 3D technology[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2117-2126 DOI: 10.3788/OPE.20142208.2117.
研究了基于数字化3D技术的全膝置换股骨假体再设计并通过激光选区熔化(SLM)技术直接制造了股骨假体,以满足医学上对全膝置换股骨假体的高适配性要求。对一名患者的全膝关节CT连续断层图像提取股骨3D模型,根据骨科医生手术规划进行了数字化3D解剖与测量,并据此对目前商业化的假体进行了重新设计。然后,利用SLM技术直接制造了再设计完成的3D股骨假体模型,并讨论了制造工艺参数、机械性能、空间优化摆放位置以及成型精度等关键技术。实验结果显示:依据患者股骨远端解剖参数可完成股骨假体的3D模型再设计并可利用SLM技术直接制造出股骨假体,单个股骨假体成型时间为5.2 h,成型精度标准偏差为0.030 mm,成型致密度达到99.02%;热处理后成型性能优于美国实验材料学会(ASTM) F75的铸造标准。得到的结果表明该项技术可以快速制造完成患者所需要的股骨假体,且成型性能优良。
The redesign of femoral components for total knee arthroplasty on the basis of digital 3D technology was researched and a femoral component was manufactured by Selective Laser Melting(SLM) technology to meet the demand of high suitability for the total knee arthroplasty in medicine. The 3D femoral model was extracted from the CT consecutive tomographic images of total knee on a patient. The digital 3D anatomy and measurement were performed based on the orthopedist's operation plan
through which the current commercial component was redesigned. Then
the 3D femoral component after redesign was directly manufactured by SLM technology and the key technologies were discussed
such as process parameters
mechanical properties
spatial position optimization and manufacturing accuracy.Experimental results show that redesigning the 3D model of the femoral component is implemented according to anatomical parameters of the patient's distal femur and the femoral component is manufactured directly by the SLM.The experiments show the manufacturing time of a single femoral component is 5.2 h
the standard deviation of manufacturing precision is 0.030 mm
and the relative density reaches 99.02%
which are all superior to those of casting standard of ASTM F75(American Society for Test Material). It concludes that the redesign and manufacturing methods based on digital 3D technology are good ways to redesign and manufacture excellent femoral components rapidly and meets the demands of the patients.
YUE B, VARADARAJAN K M, AI S, et al.. Differences of knee anthropometry between Chinese and white men and women [J]. The Journal of arthroplasty, 2011, 26(1):124-130.
HUIZINGA M R, BROUWER R W, BISSCHOP R, et al.. Long-term follow-up of anatomic graduated component total knee arthroplasty: a 15-to 20-year survival analysis [J]. The Journal of Arthroplasty, 2012, 27(6):1190-1195.
裴国献,张元智.数字骨科学[M]. 北京:人民卫生出版社, 2009. PEI G X,ZHANG Y ZH. Digital Orthopedics[M].Beijing:People's Medical Publishing House,2009.(in Chinese)
胡岩君. 人工膝关节股骨远端, 胫骨近端截骨与假体的数字化形态学研究及其意义[D]. 广州:南方医科大学, 2010. HU Y J. Morphological measurement and application of distal femur and Proximal tibia of digital Chinese knee[D].Guangzhou:Southern medical university,2010.(in Chinese).
李桓毅. 国人内侧旋转中心膝关节假体的设计和运动学分析[D]. 上海:第二军医大学, 2009. LI H Y. Design of The Medial Pivot knee of Chinese and its related kinematics analysis [D].Shanghai:The second military medical university 2009.(in Chinese)
王彩梅,毛恩荣,周殿阁,等. 个体化人工膝关节假体的计算机辅助设计[J]. 中国组织工程研究与临床康复. 2008,12: 8661-8665. WANG C M,MAO E R,ZHOU D G, et al.. Computer-aided design of individualized artificial knee prosthesis [J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2008, 12:8661-8665. (in Chinese)
ZHANG Y,YANG Z,LI X,ea al.. custom prosthetic reconstruction for proximal tibial osteosarcoma with proximal tibio fibular joint involved[J].Surg Oncol, 2008, 17(2):87-95.
GALASSO O,MARICONDA M,BRANDO A,et al.. Disassembly of a distal femur modular prosthesis after tumor resection[J]. The Journal of Arthroplasty, 2010, 25(2):3345-3349.
王臻,滕勇,李涤尘,等. 基于快速成型的个体化人工半膝关节的研制[J]. 中国修复重建外科杂志, 2004, 18(5): 347-351. WANG ZH,TENG Y,LI D CH, et al.. Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique [J].Chinese Journal of Reparative and Reconstructive Surgery. 2004,18(5): 347-351.(in Chinese)
刘鹏, 王臻, 李涤尘, 等. 定制化铰链内滚动式双动人工半膝关节假体的设计与研究[J]. 科学技术与工程, 2009, 9(7): 1690-1695. LIU P,WANG ZH,LI D CH, et al.. Design and investigation of hinge with inter-rolling double-action custom ized semi-knee artificial prosthesis [J].Science Technology and Engineering. 2009,9(7): 1690-1695.(in Chinese)
靳忠民, 连芩, 王臻, 等. 双动人工半膝关节假体的设计及应用[J]. 机械工程学报, 2013, 49(6): 12-20. JIN ZH M,LIAN Q,WANG ZH, et al.. Custom-made bipolar hemi-knee prosthesis design and clinical application [J]. Chinese Journal of Mechanical Engineering, 2013,49(6):12-20.(in Chinese)
BERNARD A, LAROCHE F, AMMARKHODJA S, et al.. Impact of new 3D numerical devices and environments on redesign and valorisation of mechanical systems[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 143-148.
黄艳, 孙文磊. 基于反求工程的产品再设计应用研究[J]. 组合机床与自动化加工技术,2007, 9(8):33-35. HUANG Y, SUN W L.Re-engineering products based on reverse engineering application [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2007, 9(8):33-35. (in Chinese)
杨永强,王迪,吴伟辉. 金属零件选区激光熔化直接成型技术研究进展[J]. 中国激光, 2011,38(6):0601007. YANG Y Q,WANG D,WU W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6):0601007.(in Chinese)
吴伟辉,杨永强,卫国强. 选区激光熔化快速成型制造精密金属零件技术[J]. 中国激光,2007,34(s1):175-179. WU W H,YANG Y Q,WEI G Q. Direct manufacturing of precision metal parts by selective laser melting [J]. Chinese J. Lasers, 2007,34(s1):175-179.(in Chinese)
DISEGI J A, RICHARD L K, ROBERT P. Cobalt Base Alloys for Biomedical Applications[M]. ASTM International, 1999.
DAVIS J R. ASM specialty handbook: nickel, cobalt, and their alloys[J]. ASM International, Member/Customer Service Center, Materials Park,USA,2000:442.
NIINOMI M. Metals for biomedical devices[M]. T. Narushima, CRC Press, 2010.
PUPO Y, DELGADO J, SEREN L, et al.. Scanning space analysis in selective laser melting for CoCrMo powder[J]. Procedia Engineering, 2013, 63: 370-378.
MONROY K, DELGADO J, CIURANA J. Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process [J]. Procedia Engineering, 2013, 63: 361-369.
AVERYANOVA M, BERTRAND P, VERQUIN B. Manufacture of Co-Cr dental crowns and bridges by selective laser Melting technology: This paper presents the successful application of the selective laser melting technology in dental frameworks manufacturing from Co-Cr alloy using Phenix PM 100T Dental Machine over a production period of 14 months[J]. Virtual and Physical Prototyping, 2011, 6(3): 179-185.
TAKAICHI A, NAKAMOTO T, JOKO N, et al.. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications[J]. Journal of the mechanical behavior of biomedical materials, 2013,21(5):67-76.
JEVREMOIC D, PUSKAR T, KOSEC B, et al.. The analysis of the mechanical properties of F75 Co-Cr alloy for use in selective laser melting (SLM) manufacturing of removable partial dentures (RPD)[J]. Metalurgija-Zagreb, 2012, 51(2): 171.
UNS R30075,外科植入物用钴-28铬-6钼合金铸件和铸造合金规格[S]. UNS R30075,Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants[S].(in Chinese).
WANG D,YANG Y Q, SU X B, et al.. Study on Energy Input and Its Influences on Single Track, Multi-track and Multi-layer in SLM[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(9-12): 1189-1199.
KRUTH J P, FROYEN L, VAN V J, et al.. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1): 616-622.
吴伟辉,杨永强,何兴容,等. 金属质个性化手术模板的全数字化快速设计及制造[J]. 光学精密工程, 2010, 18(5): 1135-1143. WU W H,YANG Y Q, HE X R, et al.. All--digital rapid design and manufacture of metal customized surgical guide plate [J]. Opt. Precision Eng.,2010, 18(5): 1135-1143.(in Chinese)
ROMBOUTS M, KRUTH J P, FROYEN L, et al.. Fundamentals of selective laser melting of alloyed steel powders [J]. CIRP Annals-Manufacturing Technology, 2006,55(1):187-192.
WANG D, YANG Y Q, YE Z H, et al.. Research on the fabricating quality optimization of the overhanging surface in SLM process [J]. International journal of advanced manufacturing, 2011,65:1471-1484.
刘杰,杨永强,苏旭彬,等. 多零件选区激光熔化成型效率的优化[J]. 光学精密工程, 2012,20(4): 699-705. LIU J,YANG Y Q,SU X B, et al.. Efficiency optimization of selective laser melting for multiparts[J].Opt. Precision Eng.,2012,20(4): 699-705.(in Chinese)
0
浏览量
441
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构