浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2013-10-11,
修回日期:2013-12-05,
纸质出版日期:2014-08-25
移动端阅览
刘民哲, 刘华, 许文斌等. 用于空间望远镜的膜光子筛[J]. 光学精密工程, 2014,22(8): 2127-2134
LIU Min-zhe, LIU Hua, XU Wen-bin etc. Membrane photon sieve for space telescope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2127-2134
刘民哲, 刘华, 许文斌等. 用于空间望远镜的膜光子筛[J]. 光学精密工程, 2014,22(8): 2127-2134 DOI: 10.3788/OPE.20142208.2127.
LIU Min-zhe, LIU Hua, XU Wen-bin etc. Membrane photon sieve for space telescope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2127-2134 DOI: 10.3788/OPE.20142208.2127.
针对空间衍射成像系统对大口径、结构轻量化、空间可展开等特性的要求,设计并制作了用于空间望远镜的新型衍射元件——PI薄膜光子筛。首先,分析了光子筛的设计理论;针对空间应用的特点和原则,采用振幅型光子筛的设计思路给出设计参数;用UG软件设计并加工制作了光子筛的机械固定结构。然后,通过镀膜、光刻、刻蚀等微细加工工艺制作了PI薄膜光子筛。最后,测试了光子筛的衍射效率及成像性能。实验结果表明:光子筛在波长632.8 nm处的实际衍射效率为4.916%,是理论值的73.9%。使用He-Ne激光器,选取10 μm的星点孔进行星点检测,得到了理想的艾里斑图像,其直径为176.70 μm,与理论极限值169.84 μm的误差仅为4.04%。搭建了分辨率板成像实验,测得薄膜光子筛的实际最高分辨频率为12.2 lp/mm,接近理论极限空间频率14.4 lp/mm,表明实验结果与理论分析基本相符。与其它刚性材料基底制成的光子筛相比,采用PI薄膜制作的光子筛不仅重量轻,同时具有较好的成像性能,可以满足空间望远镜主镜的应用要求。
According to the requirements of a space diffraction imaging system for large-aperture
weight-lightening and space deployable
a new diffraction optical element
PI photon sieve
was designed and fabricated. Firstly
the design theory of PI photon sieve was analyzed and the design parameters for an amplitude photon sieve were given according to the characteristics and the principle of space applications. Then
the mechanical structure of the photon sieve was designed by using UG software and a PI membrane photon sieve was successfully manufactured by employing micro-fabrication methods including e-beam vacuum coating
photolithography and wet etching. Finally
the diffraction efficiency of the PI photon sieve was measured and the imaging performance was tested. The experimental results show that the diffraction efficiency of photon sieve is 4.916% at the wavelength of 632.8 nm
which is about 73.9% of the theoretical value. For the star testing
by choosing the star hole with a diameter of 10 μm and using a He-Ne laser for the light source
an ideal Airy disc with a diameter of 176.70 μm was obtained
which is very close to the theoretical value
and the error is only 4.04%. For the imaging experiments
the maximum resolution of the photon sieve is measured to be 12.2 lp/mm
which is close to the spatial frequency limit of 14.4 lp/mm. It is shown that the experimental results are generally in agreement with the theoretical results. Comparing with other diffractive elements
PI photon sieve satisfies the application requirement of the primary mirror used in a space telescope for its lighter weight and better imaging performance.
ALEXEI ERKO,ALEXANDER F. 高分辨率X射线衍射光学元件[J]. 光学精密工程,2007,15(12):1816-1822. ALEXEI E,ALEXANDER F.High-resolution diffraction X-ray optics[J].Opt. Precision Eng.,2007,15(12): 1816-1822.(in Chinese)
陈继民,何超,周伟平,等. 光纤激光诱导背面干法刻蚀制备二元衍射光学元件[J]. 光学精密工程,2012,20(1):31-37. CHEN J M,HE CH,ZHOU W P.Fabrication of binary diffractive optical element by fiber laser induced backside dry etching[J]. Opt. Precision Eng.,2012,20(1):31-37. (in Chinese)
邱克强,周小为,刘颖,等. 大尺寸衍射光学元件的扫描离子束刻蚀[J]. 光学精密工程.2012,20(8):1676-1683. QIU K Q,ZHOU X W,LIU Y, et al.. Ion beam etching of large aperture diffractive optical elements[J]. Opt. Precision Eng.,2012,20(8):1676-1683. (in Chinese)
KIPP L,SKIBOWSKI M,JOHNSON R L,et al.. Sharper images by focusing soft X-rays with photon sieves [J]. Nature, 2001,414(6860):184-188.
XIE CH Q,ZHU X L,LI H L,et al..Feasibility study of hard-X-Ray nanofocusing above 20 keV using compound photon sieves [J].Opt.Lett.,2010,35(23):4048-4050.
MATTHIAS K,JENS B,HARM S,et al..Focusing light with a reflection photon sieve [J]. Opt.Lett.,2011,36(13):2405-2407.
CHENG M S,ZHOU CH G.Optimizing photon sieves to approach Fresnel diffraction limit via pixel-based inverse lithography[J].J.Vac.Sci.Technol.,2011,29(4):041002 -1-7.
KATHY K.Photon sieves enhance weapons vision [J].Laser Focus World,2004,40(2):34-37.
DAVILA J M.High-resolution solar imaging with a photon sieve [J].SPIE,2011,8148: 81480O.
RAJESH M,DARIO G.Photon-sieve lithography[J].J.Opt.Am.A,2005,22(2):312-345.
胡百泉,苏永道,贾大功. 光子筛及其优化设计[J]. 激光与光电子学进展,2010,47(1):012302. HU B Q,SU Y D,JIA D G.The photon sieve and its optimal design[J].Laser and optoelectronics Progress,2010,47(1):012302.(in Chinese)
李亚文,陈军宁,贾佳,等. 光子筛的超分辨聚焦特性研究[J]. 光电工程,2009,36(3): 130-134. LI Y W,CHEN J N,JIA J, et al..Super-resolution focus property of photon sieves [J].Opto-Electronic Engineering, 2009, 36(3): 130-134.(in Chinese)
GEOFF A,OIHA A,MICHAEL E.Dearborn, et al..FalconSAT-7: A Membrane Photon Sieve CubeSat Solar Telescope[J].SPIE, 2012, 8442:84421C.
GEOFF A,MICHAEL E D,MATTHEW G M,et al..Membrane photon sieve telescope[J].SPIE,2010, 8167:816714.
CAO Q, JAHNS J. Focusing analysis of the pinhole photon sieve: individual far-field model[J]. J.Opt.Am.A,2002,19:2387-2393.
丁源,李秀峰. UG NX 8.0中文版从入门到精通[M]. 北京:清华大学出版社,2013. DING Y,LI X F. UG NX 8.0 Chinese Version From Entry to the Master [M].Beijing: Tsinghua university press,2013.(in Chinese)
JOSEPH W.Goodman. troduction to Fourier Optics[M]. The United States of America: Roberts & Company Publishers,2005.
石顺祥,王学恩,刘劲松.物理光学与应用光学[M]. 西安:西安电子科技大学出版社,2008. SHI SH X,WANG X E,LIU J S.Physical Optics and Applied Optics[M].Xi'an:Xi'an University of Electronic Science and Technology Press,2008.(in Chinese)
张以谟.应用光学[M]. 北京:电子工业出版社,2010. ZHANG Y M.Applied Optics [M].Beijing:Beijing Industry Press,2010. (in Chinese)
0
浏览量
273
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构