浏览全部资源
扫码关注微信
中国石油大学(华东)信息与控制工程学院,山东 青岛,266580
收稿日期:2013-11-20,
修回日期:2014-01-17,
纸质出版日期:2014-08-25
移动端阅览
张冬至, 童俊, 刘哲等. 基于电活性聚合物薄膜柔性器件的触觉传感特性[J]. 光学精密工程, 2014,22(8): 2151-2158
ZHANG Dong-zhi, TONG Jun, LIU Zhe etc. Tactile sensing characteristics of electroactive polymer film based flexible devices[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2151-2158
张冬至, 童俊, 刘哲等. 基于电活性聚合物薄膜柔性器件的触觉传感特性[J]. 光学精密工程, 2014,22(8): 2151-2158 DOI: 10.3788/OPE.20142208.2151.
ZHANG Dong-zhi, TONG Jun, LIU Zhe etc. Tactile sensing characteristics of electroactive polymer film based flexible devices[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2151-2158 DOI: 10.3788/OPE.20142208.2151.
针对电活性聚合物(EAP)薄膜制造柔性智能器件的发展要求,分析了电活性聚合物薄膜的正/逆力-电特性及发电机理,采用静电诱导自组装技术在电活性聚合物表面制备了碳纳米管薄膜电极,然后构建了柔性传感器件。实验研究了EAP柔性器件的手指关节弯曲姿态及脚踏运动触觉的传感特性。扫描电子显微(SEM)形貌观察表明:碳纳米管薄膜呈网状结构且质地致密均匀。基于EAP柔性器件的手指弯曲姿态实验结果表明:在手指弯曲度为15~90°时,输出电压峰值为1.2~3.7 V,展示了输出电压峰值与手指弯曲度之间的高线性度,线性相关系数为0.9951。此外,采用EAP薄膜器件对踏步触觉进行了实验测试,其输出电压峰值在1 V左右,而且具有响应快、可重复性好等优势。本文的研究为电活性聚合物薄膜型电子皮肤及触觉传感器的发展提供了理论基础和实验依据。
According to the development requirements of Electroactive Polymer (EAP)-based flexible and intelligent devices
the positive/inversive electro-mechanical properties of an EAP film and its electric power generation were proposed. A carbon nanotube-based flexible film electrode was fabricated on the EAP surface by using electrostatic-induced self-assembly technology
then a flexible sensing device was manufactured. The sensing characteristics for EAP under finger-bending gesture and a pedal touch test were investigated. The morphological observation by a scanning electron microscopy shows the carbon nanotube film to be high strength
dense and random network structures. The measurement of finger-bending gesture illustrates that the output voltage peak is in the range of 1.2-3.7 V under finger-bending angle of 15-90°
and also indicates the high linearity between output voltage peak and finger-bending angle with linear correlation coefficient of 0.9951. Furthermore
experimental result of EAP film device under the pedal touch shows that the output voltage peak is about 1 V with advantages of swift response and good repeatability. This work can provide the theoretic foundation and experimental supports for EAP-based electronic skin and tactile sensors.
JUNG K, KIM K J, CHOI H R. A self-sensing dielectric elastomer actuator [J]. Sens. Actuators A: Phys., 2008, 143(2): 343-351.
TANAKA Y, FUJIKAWA T, KAZOE Y, et al.. An active valve incorporated into a microchip using a high strain electroactive polymer [J]. Sens. Actuators A: Phys. B: Chem., 2013, 184: 163-169.
KOVACS G, DVRING L. Contractive tension force stack actuator based on soft dielectric EAP[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, San Diego, 7287: 72870A1-15.
夏冬梅, 庞宣明, 陈晓南, 等. 电致动聚合物驱动的无阀微泵的设计与制作 [J]. 西安交通大学学报,2009,43(7):92-95. XIA D M, PANG X M, CHEN X N, et al.. Design and fabrication for valveless micropump driven by dielectric elastomer [J]. Journal of Xi'an Jiaotong University, 2009, 43(7): 92-95. (in Chinese)
张冬至, 崔天宏. 电活性聚合物薄膜柔性结构的动态特性分析与实验[J]. 光学精密工程, 2012, 20(12): 2728-2736. ZHANG D ZH, CUI T H. Dynamic characteristic analysis and experiments of flexible structure based on electroactive polymer film[J]. Opt. Precision Eng., 2012, 20(12): 2728-2736. (in Chinese)
BROCHU P, PEI Q. Advances in dielectric elastomers for actuators and artificial muscles [J]. Macromol. Rapid Commun., 2010, 31(1):10-36.
CHIBA S, WAKI M, SAWA T, et al.. Electroactive polymer artificial muscle operable in ultra-high hydrostatic pressure environment [J]. IEEE Sensors J., 2011, 11(1): 3-4.
RATHOD V T, MAHAPATRA D R, JAIN A, et al.. Characterization of a large-area PVDF thin film for electro-mechanical and ultrasonic sensing applications [J]. Sens. Actuators A: Phys., 2010, 163(1):164-171.
BENSLIMANE M Y, KIIL H-E, TRYSON M J. Dielectric electro-active polymer push actuators: performance and challenges [J]. Polym. Int., 2010, 59(3):415-421.
ALICI G, SPINKS G M, MADDEN J D W, et al.. An investigation into behaviour of electroactive polymers as mechanical sensors[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007, Zurich, 4412452.
KIM G H. Electroactive polymer composites as a tactile sensor for biomedical applicationceramics X-ray diffraction chemical synthesis mechanical properties electron microscopy [J]. Macromol. Res., 2004, 12(6): 564-572.
CHIBA S, MAKI M, KOMBLUH R, et al.. Innovative power generators for energy harvesting using electroactive polymer artificial muscles[C]. Proc. of SPIE-The International Society for Optical Engineering, San Diego,2008,6927:6927151-9.
FEIRINE R, KORNBLUH R, ECKERLE J, et al.. Dielectric elastomers: generator mode fundamentals and applications[C]. Proc. of SPIE-The International Society for Optical Engineering, San Diego,2001,4329:148-156.
JEAN-MISTRAL C, BASOUR S, CHAILLOUT J J. Dielectric polymer: scavenging energy from human motion . Proc. of SPIE-The International Society for Optical Engineering, San Diego, 2008,6927:6927-692716.
景素芳, 庞宣明, 陈晓南. 电致动聚合物致动器的动态响应研究[J]. 西安交通大学学报, 2009, 43(11): 47-50. JING S F, PANG X M, CHEN X N. Investigation for dynamic response of electroactive polymer actuator [J]. Journal of Xi'an Jiaotong University, 2009, 43(11):47-50. (in Chinese)
陈明, 林桂娟, 宋德朝. 电活性聚合物微型发电机[J]. 光学精密工程, 2010, 18(11): 2413-2420. CHEN M, LIN G J, SONG D CH. Micro-power generator on dielectric electro active polymer[J]. Opt. Precision Eng., 2010, 18(11): 2413-2420. (in Chinese)
林桂娟, 宋德朝, 陈明, 等. 电活性聚合物的力学性能及发电应用[J]. 同济大学学报(自然科学版), 2011, 39(6): 908-913. LIN G J, SONG D CH, CHEN M, et al..Mechanical property and power generation application research on dielectric electro active polymer [J]. Journal of Tongji University (Natural Science), 2011, 39(6): 908-913. (in Chinese)
林桂娟, 刘刚, 宋德朝. 电活性聚合物发电基本原理及应用研究[J]. 压电与声光, 2011, 33(5): 796-803. LIN G J, LIU G, SONG D CH. Power generation mechanism and application on the dielectric electro active polymer [J]. Piezoelectrics & Acoustooptics, 2011, 33(5): 796-803. (in Chinese)
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
AVOURIS P,CHEN Z,PEREBEINOS V. Carbon-based electronics [J]. Nat. Nanotech., 2007, 2:605-615.
BAUGHMAN R H,ZAKHIDOV A A, HEER W A de. Carbon nanotubes-the route toward applications [J]. Science, 2002, 279: 787-792.
SHIRINOV A V, SCHOMBURG W K. Pressure sensor from a PVDF film [J]. Sens. Actuators A: Phys., 2008, 142(1): 48-55.
0
浏览量
327
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构