浏览全部资源
扫码关注微信
1. 常州市传感网与环境感知重点实验室,江苏 常州,213022
2. 河海大学 物联网工程学院,江苏 常州,213022
收稿日期:2013-12-16,
修回日期:2014-01-23,
纸质出版日期:2014-08-25
移动端阅览
周妍, 李庆武, 霍冠英. 基于非下采样Contourlet变换系数直方图匹配的自适应图像增强[J]. 光学精密工程, 2014,22(8): 2214-2222
ZHOU Yan, LI Qing-wu, HUO Guan-ying. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2214-2222
周妍, 李庆武, 霍冠英. 基于非下采样Contourlet变换系数直方图匹配的自适应图像增强[J]. 光学精密工程, 2014,22(8): 2214-2222 DOI: 10.3788/OPE.20142208.2214.
ZHOU Yan, LI Qing-wu, HUO Guan-ying. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Editorial Office of Optics and Precision Engineering, 2014,22(8): 2214-2222 DOI: 10.3788/OPE.20142208.2214.
由于非下采样Contourlet变换(NSCT)域图像增强方法需要手动调节参数,无法实现自适应增强,本文将直方图均衡化和NSCT域增强相结合,提出了一种基于NSCT系数直方图匹配的自适应图像增强算法。该算法首先对低对比度含噪原图像进行直方图均衡化,然后对原图和直方图均衡化后的图像分别进行NSCT分解,得到低频子带系数和各高频方向子带系数。对低频子带,将原图的低频子带系数直方图匹配到直方图均衡化后图像的对应系数直方图上。对各个高频子带,则先进行阈值去噪,再将原图的各个高频子带系数直方图匹配到直方图均衡化后图像的对应系数直方图上。最后,经NSCT重构得到增强后的最终图像。实验结果表明,本文方法增强效果明显优于直方图均衡化,与Contourlet变换增强法相比,实验所采用的两组图像的图像评价函数(EMEE)值分别提高了24.05%、16.97%、13.29%和20.63%,且与NSCT域非自适应增强法(人工选取参数)的处理效果相当。该方法无需手工调节参数,具有自适应性和实用性强的优点。
As the image enhancement algorithm of NonSubsampled Contourlet Transform(NSCT) domain has to adjust its parameters manually and can not enhance images adaptively
this paper proposes an adaptive image enhancement algorithm by combining histogram equalization with NSCT domain enhancement. The algorithm firstly performs the histogram equalization to the original low-contrast and noisy image. Then
it conducts the NSCT decomposition on the original image and the histogram equalized image to obtain the low frequency subband coefficients and a series of the high frequency directional subband coefficients. In the low frequency subband
the transform coefficient histogram of the original image is mapped to that of the equalized image. In each high frequency subband
the transform coefficient histogram of the original image is mapped to that of the equalized image after threshold denoising. Finally
the enhanced image is obtained by reconstruction of the modified NSCT coefficients. Experimental results show that the enhancement of the proposed algorithm is superior to that of classical histogram equalization method. As contrasted with Contourlet transform enhancement in two group of images
its evuluation function EMEE(Measurement of Enhanement by Entropy) values increase by 24.05%
16.97%
13.29% and 20.63%
respectively
which corresponds to that of NSCT non-adaptive enhancement(selecting optimal parameters manually) well. Moreover
this algorithm does not need manual adjusting parameters
and is characterized by good adaptability and practicability.
SUN W, GUO B L, LI D J, et al.. Fast single-image dehazing method for visible-light systems[J]. Optical Engineering, 2013, 52(9): 093103-093103.
孙伟, 李大健, 刘宏娟, 等. 基于大气散射模型的单幅图像去雾[J]. 光学精密工程, 2013,21(4): 1040-1046. SUN W, LI D J, LIU H J, et al.. Fast single image fog removal based on atmospheric scattering model [J]. Opt. Precision Eng., 2013, 21(4): 1040-1046. (in Chinese)
尹传历, 王啸哲. 机载嵌入式图像增强系统设计与实现[J]. 液晶与显示, 2013, 28(4): 604-607. YIN CH L, WANG X ZH. Design and realization of airborne embedded image enhancement system[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(4): 604-607. (in Chinese)
焦李成, 谭山. 图像的多尺度几何分析: 回顾和展望[J]. 电子学报, 2003, 31(12A): 1975-1981. JIAO L CH, TAN SH. Development and prospect of image multiscale geometric analysis [J]. Acta Electronic Sinica, 2003, 31(12A): 1975-1981. (in Chinese)
CANDES E J, DONOHO D L. Curvelets . USA: Department of Statistics, Stanford University, 1999.
DO M N, VETTERLI M. Contourlets[J]. Studies in Computational Mathematics, 2003, 10: 83-105.
DO M N, VETTERLI M. The Contourlet transform: an efficient directional mulfiresolution image representation [J]. IEEE Transactions on Signal Processing, 2005, 14(12): 2091-2106.
CUNHA A L D, ZHOU J P, DO M N. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 10(15): 3089-3101.
杨粤涛,朱明,贺柏根,等. 采用改进投影梯度非负矩阵分解和非采样Contourlet变换的图像融合方法[J]. 光学精密工程, 2011, 19(5): 1143-1150. YANG Y T, ZHU M,HE B G, et al.. Fusion algorithm based on improved projected gradient NMF and NSCT [J]. Opt. Precision Eng., 2011, 19(5): 1143-1150. (in Chinese)
LI H J, ZHAO Z M, YU X L. Grey theory applied in non-subsampled Contourlet transform [J]. IET Image Processing, 2012, 6(3): 264-272.
李庆武, 马国翠, 霍冠英, 等. 基于NSCT域边缘检测的侧扫声呐图像分割新方法[J]. 仪器仪表学报, 2013, 34(8): 1795-1801. LI Q W, MA G C, HUO G Y, et al.. New segmentation method of side-scan sonar image based on edge detection in NSCT domain[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1795-1801. (in Chinese)
傅瑶, 孙雪晨, 薛旭成, 等. 基于非下采样轮廓波变换的全色图像与多光谱图像融合方法研究[J]. 液晶与显示, 2013, 28(3): 429-434. FU Y, SUN X CH, XUE X CH, et al.. Panchromatic and multispectral image fusion method based on nonsubsampled Contourlet transform[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 429-434. (in Chinese)
SOYEL H, MCOWAN P W. Automatic image enhancement using intrinsic geometrical information[J]. Electronics Letters, 2012, 48(15): 917-919.
SWAMINATHAN A, RAMAPACKIAM S S K, THIRAVIAM T, et al.. Contourlet transform-based sharpening enhancement of retinal images and vessel extraction application[J]. Biomedizinische Technik /Biomedical Engineering, 2013, 58(1):87-96.
石丹, 李庆武, 倪雪, 等. 基于Contourlet变换的红外图像非线性增强算法[J]. 光学学报, 2009, 29(2): 342-346. SHI D, LI Q W, NI X, et al.. Infrared image nonlinear enhancement algorithm based on Contourlet transform[J]. Acta Optica Sinica, 2009, 29(2): 342-346. (in Chinese)
RAFAEL C G, RICHARD E W. Digital Image Processing[M]. Second Edition,Beijing: Publishing House of Electronics Industry, 2002: 91-102.
DONOHO D L, JOHNSTONE I. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
PO D D Y, DO M N. Directional multiscale modeling of images using the Contourlet transform [J]. IEEE Transactions on Image Processing, 2006, 15(6): 1610-1620.
AGAIAN S S, PANETTA K, GRIGORYAN A M. Transform based image enhancement with performance measure[J]. IEEE Transactions on Image Processing, 2001, 10(3): 367-381.
AGAIAN S S, SILVER B, PANETTA K A. Transform coefficient histogram-based image enhancement alogrithms using contrast entropy[J]. IEEE Transactions on Image Processing, 2007, 16(3): 741-758.
0
浏览量
295
下载量
15
CSCD
关联资源
相关文章
相关作者
相关机构