浏览全部资源
扫码关注微信
江苏大学 机械工程学院,江苏 镇江,212013
收稿日期:2013-11-20,
修回日期:2014-01-04,
纸质出版日期:2014-09-25
移动端阅览
王霄, 张迪, 顾春兴等. 激光冲击软模大面积微弯曲成形方法[J]. 光学精密工程, 2014,22(9): 2292-2298
WANG Xiao, ZHANG Di, GU Chun-xing etc. Large area micro bending method by soft punch under laser shock wave based on multi-groove mold[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2292-2298
王霄, 张迪, 顾春兴等. 激光冲击软模大面积微弯曲成形方法[J]. 光学精密工程, 2014,22(9): 2292-2298 DOI: 10.3788/OPE.20142209.2292.
WANG Xiao, ZHANG Di, GU Chun-xing etc. Large area micro bending method by soft punch under laser shock wave based on multi-groove mold[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2292-2298 DOI: 10.3788/OPE.20142209.2292.
为了实现金属箔板大面积微弯曲成形,本文结合激光冲击微弯曲成形技术与软模成形技术的优点,提出了激光冲击软模大面积微弯曲成形方法。 该方法是在脉冲激光冲击波压力下,将软模作为柔性冲头作用于金属箔板来实现工件成形的。实验中使用了Innolas Gmbit公司生产的Spitlight 2000 THG脉冲激光器,将250
μ
m厚的聚氨酯橡胶薄膜作为软模,采用德国LPKF-ProtoMat-C60型雕刻机在印刷电路板上加工出深度为120
μ
m的U型多槽模具,实现了在厚度为30
μ
m的铜箔板上一次性对3个U型凹槽冲击成形。用KEYENCE VHX-1000C超景深三维显微系统进行工件观测,结果显示工件上的微成形槽具有良好的轮廓质量。以ANSYS/LS-DYNA为平台,使用有限元建模(FEM)方法对微弯曲过程进行了数值模拟。实验和模拟结果均表明,加载软模的工件与模具的U型凹槽特征在形状上更加接近,成形工件更加均匀,而且具有较好的表面质量,其最大平均成形深度可达110
μ
m,大于激光直接冲击成形的最大深度(88
μ
m),说明使用软模提高了充型能力。
To implement the large area micro bending forming of metal foils
this paper presents a large area micro bending method by laser shock wave based on advantages of laser shock bending forming and soft punch forming. With this method
the metal sheets would be deformed under the soft punch. In the experiments
a pulse Nd-YAG laser (Innolas Gmbit Spitlight 2000 THG) with Gaussian distribution beam was employed
and the polyurethane rubber with a thickness of 250
μ
m were used as the soft punch. The U-shaped grooves with a depth of 120
μ
m were machined on a printed circuit board with an engraving machine made in Germany(LPKF-ProtoMat-C60). After one impact
three U-shaped grooves were replicated from the mold on cooper foils with a thickness of 30
μ
m. Observed by the digital measurement system (KEYENCE VHX-1000C)
the deformed micro grooves in the work piece own good contour shape. Besides
the numerical simulation was used to understand the micro-bending process by the ANSYS/LS-DYNA software. The experiment and simulation results show that the work pieces with soft punch have more uniform multi-groove contour shapes and good surface quality. The depth of the deformed micro grooves in the work piece reaches as deep as 110
μ
m
higher than that from the laser direct shock shape(88
μ
m). Therefore
it implies that this kind of process improves the work piece forming ability and quality.
杨超君, 周建忠, 张永康, 等. 激光冲击金属板料变形的最小激光能量估算及其实验研究[J]. 光学 精密工程, 2006, 14(3): 396-401. YANG CH J, ZHOU J ZH, ZHANG Y K, et al.. Study on calculation of minimum laser energy of sheet metal deformation by laser shock forming [J]. Opt. Precision Eng., 2006, 14(3): 396-401. (in Chinese)
周建忠, 卫登辉, 黄舒, 等. 微尺度激光喷丸强化 TiN 涂层的表面性能[J]. 光学 精密工程, 2011, 19(11): 2679-2684. ZHOU J ZH, WEI D H, HUANG SH, et al.. Microscale laser shock peening on TiN coatings [J]. Opt. Precision Eng., 2011, 19(11):2679-2684. (in Chinese)
王续跃, 许卫星, 徐文骥, 等. 硅片激光弯曲成形的数值模拟与实验[J]. 光学 精密工程, 2008, 16(4): 605-610. WANG X Y, XU W X, XU W J, et al.. Simulation and experiment of laser bending of silicon sheet [J].Opt. Precision Eng., 2008, 16(4):605-610. (in Chinese)
吴东江, 马广义, 周秋菊, 等. 长脉宽脉冲激光硅片弯曲成形试验[J]. 光学 精密工程, 2007, 15(9): 1361-1365. WU D J,MA G Y,ZHOU Q J,et al.. Experimental study of bending silicon chip with long pulse width laser [J]. Opt. Precision Eng., 2007, 15(9):1361-1365. (in Chinese)
ZHANG W, LAWRENCE Y Y. Microscale laser shock processing-modeling, testing, and microstructure characterization [J]. Journal of Manufacturing Processes, 2001, 3(2): 128-143.
ZHANG W, YAO Y L. Micro scale laser shock processing of metallic components [J]. Transactions-American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering, 2002, 124(2): 369-378.
CHEN H, WANG Y, KYSAR J W, et al.. Advances in microscale laser shock peening [J]. Tsinghua Science and Technology, 2004, 9(5):506-518.
CHEN H, YAO Y L, KYSAR J W, et al.. Fourier analysis of X-ray micro-diffraction profiles to characterize laser shock peened metals [J]. International Journal of Solids and Structures, 2005,42(11):3471-3485.
WANG Y, FAN Y, VUKELIC S, et al.. Energy-level effects on the deformation mechanism in microscale laser peen forming [J]. Journal of Manufacturing Processes, 2007, 9(1):1-12.
WANG Y, KYSAR J W, YAO Y L. Analytical solution of anisotropic plastic deformation induced by micro-scale laser shock peening [J]. Mechanics of Materials, 2008, 40(3):100-114.
NIEHOFF H S, VOLLERTSEN F. Non-thermal laser stretch-forming [J]. Adv. Mater. Res., 2005,6-8:433-440.
SCHULZE N H, HU Z Y, VOLLERTSEN F. Mechanical and laser micro deep drawing [J]. Key Engineering Materials, 2007, 344:799-806.
VOLLERTSEN F, NIEHOFF H S, WIELAGE H. On the acting pressure in laser deep drawing [J]. Production Engineering, 2009, 3(1):1-8.
车志刚, 熊良才, 史铁林, 等. 微尺度下激光冲击金属材料的特性分析与展望[J]. 激光技术, 2008,32(4):350-352. CHE ZH G, XIONG L C, SHI T L, et al.. Character analysis and development of metal material for microscale laser shock processing [J]. Laser Technology, 2008, 32(4);350-352.(in Chinese)
CHE Z, XIONG L, SHI T, et al.. FEM Calculation of Microscale Laser Shock Processing on MEMS Material With Excimer Laser[M]. London:Springer, 2008:785-792.
SHEN Z, GU C, LIU H, et al.. Fabricating three-dimensional array features on metallic foil surface using overlapping laser shock embossing [J]. Optics and Lasers in Engineering, 2013,51(8):973-977.
SHEN Z, LIU H, WANG X, et al.. Micromold-based laser shock embossing of metallic foil: fabrication of large-area three-dimensional microchannel networks [J]. Materials and Manufacturing Processes, 2011, 26(9): 1126-1129.
LIU H, SHEN Z, WANG X, et al.. Micromould based laser shock embossing of thin metal sheets for MEMS applications [J]. Applied Surface Science, 2010, 256(14): 4687-4691.
THIRUVARUDCHELVAN S. The potential role of flexible tools in metal forming [J]. Journal of Materials Processing Technology, 2002, 122(2):293-300.
DIRIKOLU M H, AKDEMIR E. Computer aided modelling of flexible forming process [J]. Journal of Materials Processing Technology, 2004, 148(3):376-381.
PENG L, LAI X, NI J. Micro-groove forming by soft punch and its numerical simulation [C]. 1st International Conference on Micromanufacturing, UIUC, USA, 13-15 Sep., 2006:192-197.
WANG X, DU D, ZHANG H, et al.. Investigation of microscale laser dynamic flexible forming process-simulation and experiments [J]. International Journal of Machine Tools and Manufacture, 2013, 67:8-17.
PENG L, HU P, LAI X, et al.. Investigation of micro/meso sheet soft punch stamping process-simulation and experiments [J]. Materials & Design, 2009, 30(3):783-790.
BANAS G, ELSAYED A H E, LAWRENCE F V, et al.. Laser shock-induced mechanical and microstructural modification of welded maraging steel [J]. Journal of Applied Physics, 1990, 67(5):2380-2384.
SEALY M P, GUO Y B. Fabrication and finite element simulation of micro-laser shock peening for micro dents [J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2009, 10(2):134-142.
BATANI D, NAZAROV W, HALL T, et al.. Foam-induced smoothing studied through laser-driven shock waves [J]. Physical Review E, 2000, 62(6):8573-8582.
ARIF A F M. Numerical prediction of plastic deformation and residual stresses induced by laser shock processing [J]. Journal of Materials Processing Technology, 2003, 136(1): 120-138.
0
浏览量
444
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构