浏览全部资源
扫码关注微信
南京理工大学 MEMS惯性技术研究中心,江苏 南京,210094
收稿日期:2014-01-18,
修回日期:2014-03-04,
纸质出版日期:2014-09-25
移动端阅览
赵阳, 裘安萍, 施芹等. 硅微陀螺仪零偏稳定性的优化[J]. 光学精密工程, 2014,22(9): 2381-2388
ZHAO Yang, QIU An-ping, SHI Qin etc. Optimization of bias stability for silicon microgyroscope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2381-2388
赵阳, 裘安萍, 施芹等. 硅微陀螺仪零偏稳定性的优化[J]. 光学精密工程, 2014,22(9): 2381-2388 DOI: 10.3788/OPE.20142209.2381.
ZHAO Yang, QIU An-ping, SHI Qin etc. Optimization of bias stability for silicon microgyroscope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2381-2388 DOI: 10.3788/OPE.20142209.2381.
为了进一步提高硅微陀螺仪的零偏稳定性,使其满足更高精度应用场合的需求,研究了硅微陀螺仪零偏稳定性优化技术。以典型
Z
轴硅微陀螺仪为例,对影响其零偏稳定性的主要因素:机械耦合误差、电路耦合误差、机械热噪声、接口电路噪声进行了完整分析,并从抑制零偏温度漂移及输出噪声两个角度提出了改善硅微陀螺仪零偏稳定性的设计原则。基于上述原则,优化设计了硅微陀螺仪的机械结构及接口电路。最后对所设计的硅微陀螺仪进行了零偏稳定性测试,以验证所提出优化设计原则的有效性。实验结果表明,4个测试组的硅微陀螺仪零偏输出均无明显漂移,且零偏稳定性在6()/h左右,达到了中等战术级水平。
To improve the bias stability of a silicon microgyroscope for more precise applications
the optimization of bias stability for the silicon microgyroscope was explored. By taking a typical
Z
-axis silicon microgyroscope for an example
zero-rate output errors of a typical
Z
-axis silicon microgyroscope caused by mechanical coupling
electrical coupling
mechanical thermal noise and interface circuit noise were analyzed. On the basis of decreasing the drift and noise of zero-rate outputs
the design principle to improve the bias stability of the silicon microgyroscope was proposed. The mechanical structure and interface circuits for the silicon microgyroscope were designed. To verify the availability of the design principle
the bias stability of the silicon microgyroscope was tested. Experimental results indicate that the zero-rate outputs of four tested silicon microgyroscopes are no obvious drifts
and their bias stabilities are at the level of 6 ()/h. It suggests that the proposed silicon microgyroscope has reached a medium tactical precision grade.
刘危,解旭辉,李圣怡. 微机械惯性传感器的技术现状及展望[J]. 光学 精密工程,2003,11(5):425-431. LIU W, XIE X H, LI SH Y. Present state and perspectives of micromachined inertial sensors [J]. Opt.Precision Eng., 2003, 11(5):425-431. (in Chinese)
BARBOUR N, SCHMIDT G. Inertial sensor technology trends [J].IEEE Sensors Journal, 2001, 1(4):332-339.
YAZDI N, AYAZI F, NAJAFI K. Micromachined inertial sensors [J]. Proceedings of the IEEE, August 1998, 86(8):1640-1659.
YOLEDÉVELOPPEMENT. Technology trends for inertial MEMS 2011 [EB/OL]. http://www.yole.fr.
SHARMA A, ZAMAN M F, ZUCHER M, et al..A 0.1°/HR bias drift electronically matched tuning fork microgyroscope [C]. IEEE 21st International Conference on Micro Electro Mechanical Systems, MEMS 2008, Tucson, 2008:6-9.
JASON K P H. Modeling and identification of the Jet Propulsion Laboratory vibratory rate microgyroscope [D]. American:Mechanical engineering, University of California, 2002.
JIANG X S.Capacitive position-sensing interface for micromachined inertial sensors [D]. America:University of California, Berkeley, 2003.
Draper Laboratory, The Draper Technology Digest 2004 [EB/OL].http://www.draper.com/technology_digest.html.
XIA D ZH, SHENG X, WANG SH R. A digital prototype miniature silicon microgyroscope [C].Proceedings of the 2010 5th IEEE International Conference on Nano/Micro Engineered and Moleular Systems, Xiamen, 2010:429-432.
ZHANG R, GAO ZH Y, CHEN Z Y. A bulk micromachined vibrating wheel rate gyroscope [C].Proc. of the SPIE the International Society for Optical Engineering. Nanjing, 2001:54-58.
IEEE Std 528-2001. IEEE Standard for Inertial Sensor Terminology [S].New York:The Institute of Electrical and Electronics Engineers Inc., 2001.
ALLAN D W. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators [J]. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 1987, 34(6):647-654.
HOPCROFT M A, NIX W D, KEENY T W.What is the Young's modulus of silicon [J]. Journal of Microelectromechanical Systems, 2010, 19(2):229-238.
SAUKOSKI M, AALTONEN L, HALONEN K.Zero-rate output and quadrature compensation in vibratory MEMS gyroscopes [J]. IEEE Sensors Journal, 2007, 7(12):1639-1652.
施芹,裘安萍,苏岩,等. 硅微陀螺仪的机械耦合误差分析 [J]. 光学 精密工程,2008, 16(5):894-898. SHI Q, QIU A P, SU Y, et al.. Mechanical coupling error of silicon microgyroscope [J]. Opt.Precision Eng., 2008, 16(5):894-898. (in Chinese)
ARNAUD W. Bias contributions in a MEMS turning fork gyroscope [J]. Journal of Microelectromechanical Systems, 2013, 22(2):303-308.
SHARMA A, ZAMAN M F, AYAZI F. A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes [J].Journal of Solid-State Circuits, 2007, 42(8):1790-1802.
施芹,苏岩,裘安萍,等. MEMS陀螺仪器件级真空封装技术 [J]. 光学 精密工程,2009,17(8):1987-1992. SHI Q, SU Y, QIU A P,et al.. Device level vacuum packaging technologies of MEMS gyroscopes [J]. Opt.Precision Eng., 2009, 17(8):1987-1992. (in Chinese)
GABRIELSON T B. Mechanical-thermal noise in micromachined acoustic and vibration sensors [J]. IEEE Trans on Electron Devices, 1993, 40 (5):903-909.
赵阳,裘安萍,施芹,等. 微机械陀螺检测接口建模及前置放大器优化[J]. 光学 精密工程, 2013,21(7):1734-1740. ZHAO Y, QIU A P, SHI Q, et al..Modeling of sensing interface for micromachined gyroscope and its front-end optimization[J]. Opt.Precision Eng., 2013, 21(7):1734-1740. (in Chinese)
0
浏览量
230
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构