浏览全部资源
扫码关注微信
1. 北京科技大学 自动化和电子工程学院 钢铁流程先进控制教育部重点实验室 北京,100083
2. 北京佰能电气技术有限公司 北京,100096
收稿日期:2013-07-26,
修回日期:2013-09-24,
纸质出版日期:2014-09-25
移动端阅览
苗亮亮, 陈先中, 侯庆文等. 高炉料面检测中的多源数据融合[J]. 光学精密工程, 2014,22(9): 2407-2415
MIAO Liang-liang, CHEN Xian-zhong, HOU Qing-wen etc. Multi-source data fusion in detection of blast furnace burden surface[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2407-2415
苗亮亮, 陈先中, 侯庆文等. 高炉料面检测中的多源数据融合[J]. 光学精密工程, 2014,22(9): 2407-2415 DOI: 10.3788/OPE.20142209.2407.
MIAO Liang-liang, CHEN Xian-zhong, HOU Qing-wen etc. Multi-source data fusion in detection of blast furnace burden surface[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2407-2415 DOI: 10.3788/OPE.20142209.2407.
针对高炉料面检测中多传感器数据难以直接应用的问题,提出了同时融合高度和温度数据,结合布料机理对非检测点进行估计来实现料面检测的方法。首先,对高炉异类传感器得到的多源数据进行时间和空间配准;然后,根据高炉高度与温度的机理关系,提出环域配准融合思想,用高炉料面温度求出对应的高度;最后,结合料面的物理性质,将理论料形与多源数据进行贝叶斯融合得到高炉料面图像。以某钢铁企业2 500 m
3
高炉现有检测设备为基础进行了现场实验,实验结果表明,与料形估算法相比,本文检测方法的测量精度提高了5.4%,料面分辨率提高了0.43。 该方法使得高炉料面形状检测更加精准,为高炉节能减排操作提供了必要的指导。
In consideration of the difficulty of directly using the multi-sensor detecting data in detection of the burden surface of a blast furnace(BF)
a novel approach is put forward. The method fuses height data and temperature data and makes use of material mechanism to estimate the non-detecting points to obtain the burden surface. First
multi-sourced data obtained by dissimilar sensors are dealt with in both the time dimension and the spatial dimension. Then
a specific means of loop domain registration is proposed to derive the height of burden surface from the temperature of burden surface. Finally
by combing with the physical properties of surface shape and using Bayes fusion for the theoretical shape and multi-sourced data
the image of burden surface shape of BF is acquired. The experiments indicate that the measurement accuracy has improved by 5.4%
and the resolution of BF has improved by 0.43 as compared with that the traditional burden surface shape estimating method. The method provides necessary guidance for energy saving operation of blast furnaces.
GAO Z K,LIU J,GAO T.Advanced inside-furnace monitoring techniques implemented on the new largr blast furnace of shagang [J]. AISTech Iron Steel Technol.Conf.Proc,2010:565-571.
CHEN X Z, LIU F M, HOU Q W, et al.. Industrial high-temperature radar and imaging technology in blast furnace burden distribution monitoring process [J].ICEMI,2009:599-603.
MAYSUI Y, KASAI A, ITO K, et al.. Stabilizing burden trajectory into blast furnace top under high ore to coke ratio operation [J]. ISIJ International, 2003, 27(8):1159-1166.
NAG S, KORANNE V M. Development of material trajectory simulation model for blast furnace compact bell-less top [J]. Ironmaking and Steelmaking, 2009, 36(5):371-378.
ZHENG Y F, SATORU I, SHUNGO N, et al.. Influence of blast furnace inner volume on solid flow and stress distribution by three dimensional discrete element method [J]. ISIJ International, 2010,50:1406-1412.
安剑奇,吴敏,何勇,等. 基于两级信息融合的高炉料面煤气流分布检测方法[C]. 第29届中国控制会议,北京, 2010:5660-5665. AN J Q,WU M,HE Y, et al.. Detection method of gas flow distribution of burden surface based on two-stage information fusion [N].Proceedings of the 29th Chinese control conference. Beijing, 2010:5660-5665. (in Chinese)
裴闯,蒋晓瑜,王加,等. 自然彩色化双通道实时图像融合系统[J]. 光学 精密工程,2013,21(5):1333-1339. PEI CH, JIANG X Y, WANG J, et al.. Dual-channel real-time image fusion system with nature color [J]. Opt.Precision Eng., 2013,21(5):1333-1339.(in Chinese)
韩辅君,徐静,宋世忠. 基于低成本多传感器的自适应组合滤波[J]. 光学 精密工程,2011,19(12):3007-3015. HAN F J,XU J,SONG SH ZH. Adaptive attitude estimation filtering with low-cost multi-sensors for MAHRS [J]. Opt.Precision Eng.,2011,19(12):3007-3015.(in Chinese)
HE J P, TU Y Y, SHI Y Q.Fusion Model of Multi Monitoring Points on Dam Based on Bayes Theory [J]. Procedia Engineering, 2011:2133-2138.
成兰伯. 高炉炼铁工艺及计算[M]. 北京:冶金工业出版社,1991. CHENG L B. Blast furnace ironmaking process and calculation [M]. Beijing:Metallurgical Industry Press.1991. (in Chinese)
梁凯,潘泉,宋国明,等. 多传感器时间对准方法的研究[J]. 陕西科技大学学报,2006. LIANG K,PAN Q,SONG G M,et al.. Research on multi-sensor time alignment method [J]. Journal of Shanxi University of Science & Technology,2006.(in Chinese)
祝乔,程汉卿,尹怡欣,等. 基于多点雷达和最小二乘法估计高炉料面形状[J]. 北京科技大学学报,2012(9):1061-1064. ZHU Q,CHENG H Q,YIN Y X,et al.. Estimating the burden surface profile of a blast furnace based on multi-radar measurement and least squares approximations [J]. Journal of University of Science and Technology Beijing, 2012(9):1061-1064. (in Chinese)
刘云彩. 高炉布料规律[M]. 3版.北京:冶金工业出版社,2006. LIU Y C. Regularity of burden distribution in blast furnace[M]. 3nd Ed. Beijing:Metallurgical Industry Press, 2006. (in Chinese)
张航,郭蕴博,陈骁,等. 颗粒物质在冲击作用下的堆积分布[J]. 物理学报,2007,56(4):2031. ZHANG H, GUO Y B, CHEN X, et al.. The distribution of a granular pile under impact [J]. ActaPhysicaSinica, 2007,56(4):2031. (in Chinese)
吴小俊, 曹奇英, 陈保香, 等. 基于Bayes估计的多传感器数据融合方法研究[J]. 系统工程理论与实践,2000,7:45. WU X J, CAO Q Y, CHEN B X, et al.. Study on multisensor data fusion methods based on bayes estimation [J].Systems Engineering Theory and Practice,2000,7:45. (in Chinese)
陈令坤, 于仲洁, 周曼丽,等. 高炉布料数学模型的开发及应用[J]. 钢铁,2006,41(11):13. CHEN L K, YU ZH J, ZHOU M L, et al.. Development and application of blast furnace burden distribution model [J]. Iron and Steel,2006,41(11):13. (in Chinese)
0
浏览量
422
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构