浏览全部资源
扫码关注微信
1. 海南大学 热带岛屿资源先进材料教育部重点实验室,海南 海口,570228
2. 天津师范大学 物理与材料科学学院 天津,300387
3. 清华大学 新型陶瓷与精细工艺国家重点实验室 北京,100084
收稿日期:2014-03-04,
修回日期:2014-05-20,
纸质出版日期:2014-09-25
移动端阅览
蒋文凯, 刘鹏玮, 景亚妮等. 升温速率对活体硅藻壳提纯的影响[J]. 光学精密工程, 2014,22(9): 2438-2443
JIANG Wen-kai, LIU Peng-wei, JING Ya-ni etc. Effects of heating rate on biosilica structure purification of living diatoms[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2438-2443
蒋文凯, 刘鹏玮, 景亚妮等. 升温速率对活体硅藻壳提纯的影响[J]. 光学精密工程, 2014,22(9): 2438-2443 DOI: 10.3788/OPE.20142209.2438.
JIANG Wen-kai, LIU Peng-wei, JING Ya-ni etc. Effects of heating rate on biosilica structure purification of living diatoms[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2438-2443 DOI: 10.3788/OPE.20142209.2438.
选用一种舟形藻作为实验材料,研究了不同升温速率下硅藻壳的形态和成分变化。首先,对从该种硅藻得到的细胞壳进行酸洗处理,以去除金属离子和其它无机盐;之后,分别以1,3,5 和7℃/min的速率将硅藻壳升温至600℃,并保温2 h。然后,使用扫描电子显微镜、能量色散X射线分析和傅里叶变换红外分析3种手段对不同阶段和不同处理条件下的硅藻壳进行分析表征。实验显示:生物SiO
2
的含量随着升温速率的降低而升高,以1℃/min升温到600℃并保温2 h的硅藻壳的SiO
2
含量最高,其质量分数可达到90%,并且该硅藻壳能保持完整的原始形态。结果表明:由于硅藻的生物SiO
2
结构具有较好的隔热性,热传导速度慢,故较快的升温速率很难使生物有机质充分分解,而过高的温度或保温时间又会对硅藻壳形态造成新的威胁。所以,较为缓慢的升温速率有益于有机质的充分去除和保证硅藻壳外观的完整性。
The morphology and composition of living diatoms were explored at different heating rates
in which the marine diatom Navicula sp. was selected as experimental materials. First
the frustules from living diatoms were cleaned by hydrochloric acid to remove metal oxide and other inorganic salts. After that
chemically purified frustules were heated to 600℃ at the heating rates of 1℃/min
3℃/min
5℃/min and 7℃/min for 2 h. The morphology and composition of diatom frustules at different stages were characterized by Fourier Transform Infrared Spectra (FTIR)
Scanning Electronic Microscopy (SEM)
and Energy Dispersive X-ray Analysis (EDS). Obtained results show that the SiO
2
contents increase with the slowdown of the heating rate. The highest SiO
2
content in the diatom frustules is obtained when they are baked at 600℃ at a heating rate of 1℃/min for 2 h
reached about 90%
and they will maintain a shape perfectly with few impurities. These results mean that organic matter is difficult to be removed with a fast heating speed because the biosilica structures of frustules are characterized by good thermal insulator and slower heat transfer. Moreover
higher temperatures and longer maintaining temperature will effect the morphology of diatom frustules. Therefore
it suggests that the slower heating rate is beneficial to removing organic matters and ensuring the integrity of diatom appearance.
ARMBRUST E V. The life of diatoms in the world's oceans [J]. Nature, 2009, 459(7244):185-192.
FAN T X, CHOW S K, ZHANG D. Biomorphic mineralization:from biology to materials [J]. Progress in Materials Science, 2009, 54(5):542-659.
LOSIC D, MITCHELL J G, VOELCKER N H. Diatomaceous lessons in nanotechnology and advanced materials [J]. Advanced Materials, 2009, 21(29):2947-2958.
SUMPER M, BRUNNER E. Learning from diatoms:nature's tools for the production of nanostructured silica [J]. Advanced Functional Materials, 2006, 16(1):17-26.
YANG W, LOPZE P J, ROSENGARTEN G. Diatoms:Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes [J]. Analyst, 2011, 136(1):42-53.
LOSIC D, ROSENGARTEN G, MITCHELL J G, et al.. Pore architecture of diatom frustules:potential nanostructured membranes for molecular and particle separations [J]. Journal of Nanotechnological Sciences, 2006, 6:1-8.
WANG Y, ZHANG D, CAI J, et al.. Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method [J]. Applied Microbiology and Biotechnology, 2012, 95(5):1165-1178.
WANG Y, CAI J, JIANG Y, et al.. Preparation of biosilica structures from frustules of diatoms and their applications:current state and perspectives [J]. Applied Microbiology and Biotechnology, 2013, 97(2):453-460.
GUREL A, YILDIZ A. Diatom communities, lithofacies characteristics and paleoenvironmental interpretation of Pliocene diatomite deposits in the Ihlara-Selime plain (Aksaray, Central Anatolia, Turkey) [J]. Journal of Asian Earth Sciences, 2007, 30(1):170-180.
UMEMURA K, NOGUCHI Y, ICHINOSE T, et al.. Diatom cells grown and baked on a functionalized mica surface [J]. Journal of Biological Physics, 2008, 34(1-2):189-196.
UMEMURA K, NOGUCHI Y, ICHINOSE T, et al.. Morphology and physical-chemical properties of baked nanoporous frustules [J]. Journal of Nanoscience and Nanotechnology, 2010, 10(8):5220-5224.
ZHANG G, JIANG W, WANG L, et al.. Preparation of silicate-based red phosphors with a patterned nanostructure via metabolic insertion of europium in marine diatoms [J]. Materials Letters, 2013, 110:253-255.
LEE D, WANG W, GUTU T, et al.. Biogenic silica based Zn2SiO4:Mn2+ and Y2SiO5:Eu3+ phosphor layers patterned by inkjet printing process [J]. Journal of Materials Chemistry, 2008, 18(31):3633-3635.
LI Y, CHIAN W, WANG X, et al.. Coordination assembly and characterization of red-Emitting europium(Ⅲ) organic/inorganic polymeric hybrids [J]. Photochemistry and Photobiology, 2011, 87(3):618-625.
DE STEFANO L, RENDINA I, DE STEFANO M, et al.. Marine diatoms as optical chemical sensors [J]. Applied Physics Letters, 2005, 87(23):233902-233902-3.
QIN T, GUTU T, JIAO J, et al.. Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum [J]. Journal of nanoscience and nanotechnology, 2008, 8(5):2392-2398.
GALE D K, GUTU T, JIAO J, et al.. Photoluminescence Detection of Biomolecules by Antibody-Functionalized Diatom Biosilica [J]. Advanced Functional Materials, 2009, 19(6):926-933.
翁诗甫. 傅里叶变换红外光谱分析[M]. 北京:化学工业出版社,2010. WENG S F.Fourier transform infrared spectroscopy [M]. Beijing:Chemical Industrial Press, 2010. (in Chinese)
LETTIERI S, SETARO A, DE STEFANO L, et al.. The Gas-detection properties of light-emitting diatoms [J]. Advanced Functional Materials, 2008, 18(8):1257-1264.
LIU Z, FAN T, ZHOU H, et al.. Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template [J]. Bioinspiration and Biomimetics, 2007, 2(1):30.
DUDLEY S, KALEM T, AKINC M. Conversion of SiO2 diatom frustules to BaTiO3 and SrTiO3 [J]. Journal of the American Ceramic Society, 2006, 89(8):2434-2439.
0
浏览量
503
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构