浏览全部资源
扫码关注微信
1. 天津大学 机械工程学院 天津市现代工程力学重点实验室 天津,300072
2. 天津职业技术师范大学 机械工程学院 天津,300222
收稿日期:2013-10-17,
修回日期:2013-12-13,
纸质出版日期:2014-09-25
移动端阅览
周丽军, 郭建刚, 亢一澜. 碳纳米管增强聚合物复合材料的界面脱黏及应力分布[J]. 光学精密工程, 2014,22(9): 2458-2464
ZHOU Li-jun, GUO Jian-gang, KANG Yi-lan. Interfacial debonding and stress characteristics of carbon nanotube reinforced polymer composites[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2458-2464
周丽军, 郭建刚, 亢一澜. 碳纳米管增强聚合物复合材料的界面脱黏及应力分布[J]. 光学精密工程, 2014,22(9): 2458-2464 DOI: 10.3788/OPE.20142209.2458.
ZHOU Li-jun, GUO Jian-gang, KANG Yi-lan. Interfacial debonding and stress characteristics of carbon nanotube reinforced polymer composites[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2458-2464 DOI: 10.3788/OPE.20142209.2458.
碳纳米管和复合材料基体间的界面力学行为是影响复合材料宏观力学性能的重要因素,为此本文利用有限单元法对单壁碳纳米管增强聚合物复合材料的界面脱黏、切应力分布及拔出载荷进行了数值模拟。建立了一个轴对称三圆柱壳模型,引入ABAQUS中的Cohesive单元模拟了单壁碳纳米管和聚合物基体之间的界面层,分析了单壁碳纳米管的长细比、界面强度以及热残余应力等因素对碳纳米管与聚合物基体间的界面切应力以及拔出载荷的影响。模拟结果表明:当单壁碳纳米管的长度变化为50~100 nm、与基体之间的界面强度为50~100 MPa、环境温度变化为100℃ 时,碳纳米管的长细比、界面强度以及由于热失配所引起的残余应力对单壁碳纳米管与聚合物基体间的界面切应力以及拔出载荷有着显著的影响。
The interfacial mechanical behavior between Carbon Nanotubes (CNT) and composite matrices has great influence on the mechanical properties of composites
so numerical simulations based on finite element methods were presented to investigate the interfacial debonding
shear stress distributions and pullout forces of Single-walled Carbon Nanotube (SWCNT) reinforced polymer composites. An axisymmetric three-cylinder model was presented
and a cohesive model was applied to simulation of the interfacial layer between the SWCNTs and polymer matrix. The influence of the aspect ratio of SWCNTs
interfacial strength and the residual stress induced by Thermal Expansion Coefficient (TEC) mismatch on the interfacial shear stress and debonding were discussed. The results of numerical simulations show that the aspect ratio of SWCNTs
interfacial strength and the residual stress have great influence on the interfacial shear stress and debonding when the length of SWCNT is 50-100 nm
the interfacial strength is 50-100 MPa and the reduction of environmental temperature is 100℃.
YU M F, LOURIE O, DYER M J, et al.. Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load [J]. Science, 2000, 287:637-640.
TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381:678-680.
BARBER A H, COHEN S R, WAGNER H D. Measurement of carbon nanotube-polymer interfacial strength [J]. Applied Physics Letters, 2003, 82:4140-4142.
AJAYAN P, SCHADLER L, GIANNARIES C,et al.. Single-walled carbon nanotube-polymer composites:strength and weakness [J]. Advanced Materials, 2000, 12:750-753.
SCHADLER L, GIANNARIS S, AJAYAN P. Load transfer in carbon nanotube epoxy composites [J]. Applied Physics Letters, 1998, 73:3842-3844.
QIAN D, DICKEY E C, ANDREWS R,et al.. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Applied Physics Letters, 2000, 76:2868-2870.
TSUDA T, OGASAWARA T, DENG F, et al.. Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method [J]. Composites Science and Technology, 2011, 71(10):1295-1300.
GUO Y, CHO H, SHI D,et al.. Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-Al2O3 nanocomposites [J]. Applied Physics Letters, 2007, 91:261903.
HAQUE A, RAMASETTY A. Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites [J]. Composite Structures, 2005, 71:68-77.
XIAO K, ZHANG L.The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix [J]. Journal of Materials Science, 2004, 39:4481-4486.
NATSUKI T, WANG F, NI Q.Interfacial stress transfer of fiber pullout for carbon nanotubes with a composite coating [J]. Journal of Materials Science, 2007, 42:4191-4196.
ZHOU L J, KANG Y L, GUO J G. Phenomenological model of interfacial stress transfer in carbon nanotube reinforced composites with van der Waals effects [J]. Polymer Composites, 2011, 32:1069-1076.
ZHOU L J, KANG Y L, GUO J G. Theoretical model of double-walled carbon nanotube pullout from a composite matrix [J]. Science China Physics, Mechanics and Astronomy, 2012, 55:1004-1009.
ZHANG Y, WANG X. Thermal effects on interfacial stress transfer characteristics of carbon nanotubes/polymer composites [J]. International Journal of Solids and Structures, 2005, 42:5399-5412.
LAU K T.Interfacial bonding characteristics of nanotube/polymer composites [J]. Chemical Physics Letters, 2003, 370:399-405.
CHEN Y L, LIU B, HE X Q,et al.. Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites [J]. Composites Science and Technology, 2010, 70:1360-1367.
LIAO K, LI S.Interfacial characteristics of a carbon nanotube-polystyrene composite system [J]. Applied Physics Letters, 2001, 79:4225-4227.
GOU J H, MINAIE B, WANG B. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites [J]. Computational Materials Science, 2004, 31(3-4):225-236.
YANG L, TONG L,HE X. MD simulation of carbon nanotube pullout behavior and its use in determining mode I delamination toughness [J]. Computational Materials Science, 2012, 55:356-364.
刘贵立, 杨忠华, 栗青. 碳纳米管增强镁基复合材料长径比对力学性能影响的有限元分析[J]. 科学技术与工程, 2010, 10(23):5630-5633. LIU G L, YANG ZH H, LI Q. Finite element analysis of mechanics properties of aspect ratio of carbon nanotubes reinforced magnesium matrix composite material [J]. Science Technology and Engineering, 2010, 10(23):5630-5633. (in Chinese)
0
浏览量
239
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构