浏览全部资源
扫码关注微信
1. 太原理工大学 信息工程学院 微纳系统研究中心,山西 太原,030024
2. 太原理工大学 新型传感器与智能控制教育部和山西省重点实验室,山西 太原,030024
收稿日期:2013-10-12,
修回日期:2013-12-13,
纸质出版日期:2014
移动端阅览
刘颖, 王艳芬, 李刚等. MEMS低频压电振动能量采集器[J]. 光学精密工程, 2014,22(9): 2476-2482
LIU Ying, WANG Yan-fen, LI Gang etc. MEMS-based low-frequency piezoelectric vibration energy harvester[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2476-2482
刘颖, 王艳芬, 李刚等. MEMS低频压电振动能量采集器[J]. 光学精密工程, 2014,22(9): 2476-2482 DOI: 10.3788/OPE.20142209.2476.
LIU Ying, WANG Yan-fen, LI Gang etc. MEMS-based low-frequency piezoelectric vibration energy harvester[J]. Editorial Office of Optics and Precision Engineering, 2014,22(9): 2476-2482 DOI: 10.3788/OPE.20142209.2476.
设计了基于微机电系统(MEMS)的一阶、二阶传动低频压电振动能量采集器,通过压电效应将低频振动能量转化为电能来解决低频(小于200 Hz)振动环境中的能量采集问题。一阶传动能量采集器模型包括一阶传动梁及压电悬臂梁,二阶传动能量采集器模型包括一阶传动梁、二阶传动梁及压电悬臂梁。数学建模及有限元分析显示:采集器工作频率随一阶、二阶传动梁及压电悬臂梁材料的杨氏模量的减小均呈单调递减的趋势;传动梁的设计可有效降低采集器的高阶工作频率、拓宽工作带宽;而二阶传动梁可以在1
g
加速度条件下,获得10.98 Hz和44.52 Hz两个超低频率的电压峰值(分别为3.18 V/
g
和1.33 V/
g
),使系统工作频率降得更低,50 Hz以下的有效工作带宽更宽,更适合与低频振动环境匹配进行能量采集。
The first order and second order MEMS-based transmission low-frequency piezoelectric vibration energy harvesters are designed
which transform the vibration energy under a low-frequency environment (less than 200 Hz) into electricity through a piezoelectric effect to solve the problem of vibration energy harvesting. The first-order transmission energy harvester model includes a first-order transmission beam and a piezoelectric cantilever
the second-order transmission energy harvester model incorporates a first-order transmission beam
a second-order transmission beam and a piezoelectric cantilever. The results of mathematical modeling and finite element analysis indicate that the operating frequency of the energy harvester decrease monotonically with the decline of the Young modulus for the first and second order transmission beams and the piezoelectric cantilever; the design of transmission beam effectively reduces the high-order operating frequency of the harvester and broadens the operating bandwidth. As compared with the first-order transmission beam
the second-order transmission beam has acquired two voltage peaks (respectively 3.18 V/
g
and 1.33 V/
g
) at ultra-low frequencies (10.98 Hz and 44.52 Hz) with the acceleration of 1
g
which further lowers the system operating frequency and widens the effective working bandwidth (less than 50 Hz). Obtained results show the harvesters are suitable for low-frequency vibration energy harvesting.
JAMBUNATHAN M, ELFRINK R, VULLERS R, et al.. Pulsed laser deposited-PZT based MEMS energy harvesting devices [C].Applications of Ferroelectrics heldjointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), Aveiro:IEEE, 2012:1-4.
KIM S-G, PRIYA S, KANNO I. Piezoelectric MEMS for energy harvesting [J]. MRS Bulletin, 2012, 37(11):1039-1050.
李征, 万杰, 阚君武. 基于流固耦合作用的压电液压振动俘能器 [J]. 光学 精密工程, 2012, 20(5):1002-1008. LI ZH, WAN J, K J W. Piezo-hydraulic energy harvester based onsolid-fluid coupling vibration [J]. Opt. Precision Eng., 2012, 20(5):1002-1008. (in Chinese)
KIM S-H, LEUNG A, KOO C Y. Lead-free (Na0.5K0.5)(Nb0.95Ta0.05)O3-BiFeO3 thin films for MEMS piezoelectric vibration energy harvesting devices [J]. Materials Letters, 2012, 69(11):24-26.
XU R, LEI A,DAH-PETERSEN C. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting [J]. Sensors and Actuators A:Physical, 2012, 188(11):383-388.
CHEN Z, YANG Y, LU Z. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams [J]. Physica B:Condensed Matter, 2013, 410(11):5-12.
崔岩, 王飞, 董维杰, 等. 非线性压电能量采集器 [J]. 光学 精密工程, 2012, 20(12):2737-2743. CUI Y, WANG F, DONG W J,et al.. Nonlinear piezoelectric energy harvester [J]. Opt. Precision Eng., 2012, 20(12):2737-2743. (in Chinese)
ANDO B, BAGLIO S, TRIGONA C,et al.. Nonlinear mechanism in MEMS devices for energy harvesting applications [J]. Journal of Micromechanics and Microengineering, 2010, 20(12):125020.
BASSET P,GALAYKO D, PARACHA A M, et al.. A batch-fabricated and electric-free silicon electrostatic vibration energy harvester [J]. Journal of Micromechanics and Microengineering, 2009, 19(11):115025.
SAR A, ALKAN C, KARAIPEKLI A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage [J]. Applied Energy, 2010, 87(5):1529-1534.
张杨键, 伞海生. MEMS复合式振动能量采集器 [J]. 光学 精密工程, 2009, 17(6):1262-1266. ZHANG Y J, SAN H SH. MEMS hybrid power-generator from vibration energy [J]. Opt. Precision Eng., 2009, 17(6):1262-1266. (in Chinese)
DEY S, PURAHMAD M, SINHA-RAY S, et al.. Investigation of PVDF-TrFE nanofibers for energy harvesting [C]. Proceeding of 2012 IEEE Conference on Nanotechnology Material and Devices Conference (NMDC), Waikiki Beach:IEEE, 2012:21-24.
MOTAUNG T E, LUYT A S, BONDIOLI F,et al.. PMMA-titania nanocomposites:Properties and thermal degradation behaviour [J]. Polymer Degradation and Stability, 2012, 97(8):1325-1333.
POTTS J R, SHANKAR O, DU L, et al.. Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites [J]. Macromolecules, 2012, 45(15):6045-6055.
YU S, QU Y, LI T, et al.. Fabrication of PDMS microfluidic chip used in Ultraviolet integrated biological chip [C]. 2012 International Conference on Optoelectronics and Microelectronics, Changchun:IEEE, 2012:553-555.
刘延柱, 陈文良, 陈立群. 振动力学[M]. 北京:高等教育出版社,2000. LIU Y ZH, CHEN W L, CHEN L Q.Mechanics of Vibration [M]. Beijing:Higher Education Press, 2000. (in Chinese)
赵德先. 杨氏模量y与劲度系数k以及弹簧组合系统 [J]. 物理通报, 2003, 8:10-11. ZHAO D X. Young's modulus y, stiffness factor x and spring combination system [J]. Physics Bulletin, 2003, 8:10-11. (in Chinese)
朱艳华. 最小二乘法拟合参数的求解分析 [J]. 时代教育, 2012, 19(10):151-154. ZHU Y H. Analysis of solving the least squares fitting parameters [J]. Time Education, 2012, 19(10):151-154. (in Chinese)
0
浏览量
350
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构