浏览全部资源
扫码关注微信
南京邮电大学 光电工程学院 微流控光学技术研究中心,江苏 南京,210023
收稿日期:2013-12-31,
修回日期:2014-02-07,
纸质出版日期:2014-10-25
移动端阅览
赵瑞, 华晓刚, 田志强等. 电润湿双液体变焦透镜[J]. 光学精密工程, 2014,22(10): 2592-2597
ZHAO Rui, HUA Xiao-gang, TIAN Zhi-qiang etc. Electrowetting-based variable-focus double-liquid lens[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2592-2597
赵瑞, 华晓刚, 田志强等. 电润湿双液体变焦透镜[J]. 光学精密工程, 2014,22(10): 2592-2597 DOI: 10.3788/OPE.20142210.2592.
ZHAO Rui, HUA Xiao-gang, TIAN Zhi-qiang etc. Electrowetting-based variable-focus double-liquid lens[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2592-2597 DOI: 10.3788/OPE.20142210.2592.
研制了介电润湿双液体变焦透镜以实现变焦透镜的微型化及无机械部件情况下透镜的自动变焦.基于介电润湿原理制备了双液体变焦透镜.采用CCD图像测量系统
测量了不同电压下透镜的焦距
并与基于高斯光学理论推导的焦距公式进行了比较.然后
采用COMSOL软件
分析了双液体界面面形随电压的变化
讨论了动力黏度系数对透镜性能的影响.结果表明
随着电压的增大
双液体界面从初始弯向导电盐溶液变为平面继而弯向绝缘油
相应的双液体透镜实现了从凹透镜到凸透镜的转变
临界电压为50 V.当电压增大至65 V左右时
透镜焦距不再减小.透镜焦距经历了从负到零再到正的变化(-∞
-22.83 mm)∪(33.47 mm
+∞)
基本实现了焦距大范围可调.当动力黏度系数为0.03时
液体透镜的响应时间为0.015 s
对应的器件稳定性最佳.
An electrowetting-based double-liquid lens was developed to realize the small volume and automatic focusing without mechanical components for the focus-variation lens. The electrowetting-based double-liquid lens was designed and fabricated based on the dielectric wetting principle. Then
the focal length of liquid lens for different voltages was measured by a CCD image measurement system and it was compared with the theoretical value calculated by Gauss optical theory. Finally
COMSOL was employed to analyze the curvature radius of the double liquid interface at different voltages and to discuss the effect of dynamic viscosity on the response time and stability of the liquid lens. The results indicate that the double liquid interface bends to the conductive salt solution initially and then changes into a plane and finally bends to the insulating oil when the applied voltage is increased. Accordingly
the liquid lens changes from a concave lens to a convex lens
and the critical voltage is 50 V. However
the focal length of the liquid lens does not decrease any more when the applied voltage increases to 65 V. The whole focal length of the lens ranges from -∞ to -22.83 mm and from 33.47 mm to +∞
and it is adjusted continuously in a wider range. Moreover
when the dynamics viscosity of insulating oil is 0.03
the response time is 0.015 s and the corresponding performance of the device is optimal.
KAVEHVASH Z, MEHRANY K, BAGHERI K. Optimization of lens-array structure for performance improvement of integral imaging [J]. Opt. Lett., 2011, 36(20): 3993-3995.
张鹰, 张新, 史广维, 等. 液体透镜在变焦系统中的应用[J]. 中国光学, 2013, 6(1):46-56. ZHANG Y, ZHANG X, SHI G W, et al.. Application of liquid lenses in zoom system [J]. Chinese Optics, 2013, 6(1):46-56.(in Chinese)
CHEN J, WANG W S, FANG J. Variable-focusing microlens with microfluidic chip [J]. Journal of Micromechanics and Microengineering, 2004, 14(5):675-680.
MORAN P M, DHARMATILLEKE S, KHAW A H. Fluidic lenses with variable focal length [J]. Applied Physics Letters, 2006, 88(041120):1-3.
李零印, 王一凡. 液体变焦技术的发展与展望[J]. 中国光学, 2012, 5(6):578-582. LI L Y, WANG Y F. Development and prospect of varifocal-liquid technique [J]. Chinese Optics, 2012, 5(6):578-582. (in Chinese)
HU X, ZHANG S, LIU Y, et al.. Electrowetting based infrared lens using ionic liquids [J]. Applied Physics Letters, 2011, 99:2135-2140.
JORGE F F, SALVADOR C, LUIS C, et al.. Test and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy [J]. Applied Optics, 2013, 52(30):7256-7264.
JULIET T G, VICTOR M B, CAROL C C, et al.. Simulation of electrowetting lens and prism arrays for wavefront compensation [J]. Applied Optics, 2012, 51(27): 6618-6623.
KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras [J]. Applied Physics Letters, 2004, 85:1128-1130.
BERGE B, PESEUX J. Variable focal lens controlled by an external voltage: an application of electrowetting [J]. The European Physical Journal E, 2000, 3: 158-163.
CHEVALLIOT S, KUIPER S, HEIKENFELD J, et al.. Experimental validation of the invariance of electrowetting contact angle saturation [J]. Journal of Adhesion Science and Technology, 2012, 26:1909-1930.
WYATT C, NELSON C J. Droplet actuation by electrowetting-on-dielectric [J]. Journal of Adhesion Science and Technology, 2012, 26:1747-1771.
何平安, 林银森. 透镜焦距的CCD图像测量系统[J]. 武汉测绘科技大学学报, 1999, 24(1):24-26. HE P A, LIN Y S. CCD image measurement system for lens focal length [J]. Journal of Wuhan Technology University of Surveying and Mapping, 1999, 24(1):24-26. (in Chinese)
彭润玲. 电湿效应无机械运动变焦光学系统研究[D]. 上海:上海理工大学, 2010. PENG R L. Study on non mechanical movement zoom optical system based on electrowetting[D] . Shanghai: Shanghai University of Science and Technology, 2010. (in Chinese)
0
浏览量
480
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构