浏览全部资源
扫码关注微信
1. 中国科学院 光电技术研究所,四川 成都,610209
2. 中国科学院 自适应光学重点实验室,四川 成都,610209
收稿日期:2013-11-22,
修回日期:2014-01-19,
纸质出版日期:2014-10-25
移动端阅览
刘超, 陈善球, 廖周等. 自适应光学技术在通信波段对大气湍流的校正[J]. 光学精密工程, 2014,22(10): 2605-2610
LIU Chao, CHEN Shan-qiu, LIAO Zhou etc. Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2605-2610
刘超, 陈善球, 廖周等. 自适应光学技术在通信波段对大气湍流的校正[J]. 光学精密工程, 2014,22(10): 2605-2610 DOI: 10.3788/OPE.20142210.2605.
LIU Chao, CHEN Shan-qiu, LIAO Zhou etc. Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2605-2610 DOI: 10.3788/OPE.20142210.2605.
针对大气湍流引起的激光光强、相位和传输方向的随机变化对大气激光通信质量的影响
开展了用自适应光学(AO)技术校正大气湍流影响的研究.定量分析了自适应光学技术在通信波段校正大气湍流的效果.利用中国科学院光电技术研究所研制的安装在云南丽江高美谷观测站的1.8 m望远镜和127单元AO系统
在1 550 nm通信波段对不同高度角的恒星进行了大气湍流校正实验.通过采集校正后的恒星图像
分析了校正后的斯特勒尔比
同时记录下当时的大气相干长度
由此得到了在不同大气湍流条件下的校正效果.实验表明
当大气湍流强度
D/r
0
(1 550 nm)小于6.5时
校正后的波面RMS值可以小于1 rad
即在中弱大气湍流条件下
该AO系统可以有效地对大气湍流进行校正.
In consideration of effect of intensity scintillation
phase distortion and transmission direction changes caused by atmospheric turbulence on communication links
this paper explores the correction technology of the atmospheric turbulence by the adaptive optics (AO). The correction effects of the AO on atmospheric turbulence in the waveband of free-space communication was analyzed quantitatively. A field experiment to observe the star with different altitude angles in the 1 550 nm waveband was performed with a 1.8 m telescope mounted on Yunnan and the 127-actuators AO system developed by the Institute of Optics and Electronics
Chinese Academy of Sciences. The Strehl ratio and the atmospheric coherent length were recorded for the observation of each star. The experiment results show that when the atmospheric turbulence intensity
D/r
0
(1 550 nm) is less than 6.5
the wavefront error will be less than 1 rad after correction by the AO. It concludes that the AO is able to overcome the effect of the atmospheric turbulence on the required quality of free-space coherent laser com- munication under weak and moderate turbulence conditions.
GREGORY M, HEINE F, KAMPFNER H. Commercial optical inter-satellite communication at high data rates[J]. Opt. Eng., 2012, 51(3):031202.
SEEL S, KAMPFNER H, HEINE F. Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook[J]. IEEE, 2011, 1111:1-7.
FIELDS R A, KOZLOWSKI D A, YURA H T. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[J]. SPIE, 2011, 8184:81840D.
HEINE F, KAMPFNER H, LANGE R. Optical inter-satellite communication operational[J]. The 2010 Military Communications Conference, 2010, 978:2284-2288.
SMUTNY B, KAEMPFNER H, MUEHLNIKEL G. 5.6 Gbps optical intersatellite communication link[J]. SPIE, 2009, 7199: 719926.
RODDIER F. Adaptive Optics in Astronomy[M]. Cambridge: Cambridge University Press, 1999.
HARDY J W. Adaptive Optics For Astronomical Telescopes[M]. New York: Oxford University Press, 1998.
刘超,穆全全,胡立发,等. 校正水平湍流波面的自适应光学系统带宽需求分析[J]. 光学 精密工程,2010, 18(10):2137-2142. LIU CH, MU Q Q, HU L F, et al.. Bandwidth requirements of adaptive optical system for horizontal turbulence correction[J]. Opt. Precision Eng., 2010, 18(10):2137-2142.(in Chinese)
PORTER J, QUEENER H M, LIN J E. Adaptive Optics for Vision Science Principles, Practices, Design, and Applications[M]. Canada:Wiley-Interscience A, John Wiley & Sons, Inc.,2006.
TYSON R K, THARP J, SCANNING D E. Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closed-loop results[J]. Opt. Eng., 2005, 44(9): 096003-096003-6.
WRIGHT M W, ROBERTS J, FARR W. Improved optical communications performance combining adaptive optics and pulse position modulation[J]. Opt. Eng., 2008, 47(1): 016003-016003-8.
CHEN E, CHENG H, LI X. Research on adaptive optics in satellite-to-ground laser communication[J]. SPIE, 2012, 8331: 833104.
WEYRAUCH T, VORONTSOV M A, GOWENS J W. Fiber coupling with adaptive optics for free-space optical communication[J]. Free-Space Laser Communication and Laser Imaging, 2002, 4489: 177-184.
武云云,陈二虎,张宇. 自适应光学技术提高FSO性能的实验验证[J]. 光通信技术, 2012(4): 15-18. WU Y Y, CHEN E H, ZHANG Y. Experiment on adaptive optics to improve the performance of FSO[J]. Opt. Commun. Tech., 2012(4):15-18.(in Chinese)
LIU C, CHEN S, LI X. The performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Opt. Express, 2014, 22(13):15554-15563.
SODNIK Z, ARMENGOL J P, CZICHY R H. Adaptive optics and ESA's optical ground station[J]. SPIE, 2009, 7464:746406.
WEI K, ZHANG X, XIAN H. First light on the 127-element adaptive optical system for 1.8-m telescope[J]. Chin. Opt. Lett., 2010, 8(11):1019-1021.
RAO C, WEI K, ZHANG X. First observations on the 127-element adaptive optical system for 1.8 m telescope[J]. SPIE, 2010, 7654:76541H-76541H-8.
RAO C, JIANG W, ZHANG Y. Progress on the 127-element adaptive optical system for 1.8m telescope[J].SPIE, 2008, 7015:70155Y-70155Y-9.
0
浏览量
458
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构