浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 安徽光学精密机械研究所 大气成分与光学重点实验室,安徽 合肥,230031
3. 中国科学院 安徽光学精密机械研究所 大气物理化学研究室,安徽 合肥,230031
收稿日期:2013-10-22,
修回日期:2013-11-16,
纸质出版日期:2014-10-25
移动端阅览
马宏亮, 孙明国, 曹振松等. 适用于大气分子低温光谱实验的低温吸收池[J]. 光学精密工程, 2014,22(10): 2617-2621
MA Hong-liang, SUN Ming-guo, CAO Zhen-song etc. Cryogenic cell for low-temperature spectral experiments of atmospheric molecules[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2617-2621
马宏亮, 孙明国, 曹振松等. 适用于大气分子低温光谱实验的低温吸收池[J]. 光学精密工程, 2014,22(10): 2617-2621 DOI: 10.3788/OPE.20142210.2617.
MA Hong-liang, SUN Ming-guo, CAO Zhen-song etc. Cryogenic cell for low-temperature spectral experiments of atmospheric molecules[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2617-2621 DOI: 10.3788/OPE.20142210.2617.
设计研制了一套可控温低温吸收池装置
用于系统研究大气分子的低温光谱参数.在之前研制的低温池的基础上
对新研制的低温池的杜瓦瓶与样品池的安装方式
样品池的构造材料以及具体的制冷方法进行了改进
提高了温度稳定性和均匀性.实验显示:在0.5 h监测时间内温度波动小于±0.3 K
温度梯度约为0.03 K/cm.基于新型低温池
结合可调谐半导体激光吸收光谱技术
开展了6 358.654 cm
-1
处二氧化碳低温精细光谱测试
获得了二氧化碳吸收谱线的自展宽系数及其温度依赖系数(
n
=0.738±0.014)
并与相关文献报道的温度依赖系数进行了对比验证.结果表明
该装置可以满足大气分子低温光谱实验的需要.
A new controllable cryogenic cell is designed to provide very useful low temperature spectroscopic parameters for a laser atmospheric transmission project and trace gas detection. On the basis of the existing low temperature cryogenic cell
the new developed cryogenic cell improves the installation of a dewar and a sample cell
cell sample materials and concrete cooling method
and increases temperature stability and uniformity of the cell. The experimental results indicate that the new cryogenic cell shows its temperature fluctuations to be less than ±0.3 K in monitoring time of 0.5 h and the temperature gradient to be about 0.03 K/cm. Based on the developed cryogenic cell
the low temperature spectroscopy of carbon dioxide at 6 358.654 cm
-1
is measured by using tunable diode laser absorption spectroscopy and the self-broadening coefficient and the temperature-dependent exponent (
n
=0.738±0.014) of the carbon dioxide absorption spectrum are obtained. The results show that the temperature-dependent exponent is in good agreement with that other reports. In conclusion
the cell is able to fulfill the requirements of low temperature absorption spectral experiments of atmospheric molecules.
周海金,刘文清,司福祺. 星载大气痕量气体差分吸收光谱仪杂散光抑制[J]. 光学 精密工程,2012, 20(11):2331-2337. ZHOU H J, LIU W Q, SI F Q. Stray light suppression of space-borne differential optical absorption spectrometer for monitoring atmospheric trace gas [J]. Opt. Precision Eng., 2012, 20(11):2331-2337. (in Chinese)
孙俊,张世杰,李葆华. 利用地球紫外和恒星可见光的卫星自主导航[J]. 光学 精密工程,2013,21(5):1192-1198. SUN J, ZHANG SH J, LI B H. Autonomous navigation based on star light and ultraviolet earth sensors [J]. Opt. Precision Eng., 2013, 21(5):1192-1198. (in Chinese)
曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学, 2013,6(6):834-840. QU Y. Technical status and development tendency of atmosphere optical remote and monitoring [J]. Chinese Optics, 2013, 6(6):834-840.(in Chinese)
MONDELAIN D, CAMY-PEYRET C, DENG W, et al.. Study of molecular line parameters down to very low temperature [J]. Appl. Phys. B, 2008, 90:227-233.
SMITH M A H, RINSLAND C P,DEVI V M, et al.. Temperature dependence of broadening and shifts of methane lines in the V4 band [J]. Spectrochim. Acta Part A, 1992, 48:1257-1272.
MCKELLAR A R W, WATSON J K G, HOWARD B J. The NO dimer:15N isotopic infrared spectra, line-widths, and force field [J]. Mol. Phys., 1995, 86: 273-286.
HELOU Z E, ERBA B, CHURASSY S, et al.. Design and performance of a low-temperature-multi-pass-cell for absorbance measurements of atmospheric gases. Application to ozone [J]. J. Quant. Spectrosc. Radiat. Transfer, 2006,101: 119-128.
MANTZ A W, HENRY A, VALENTIN A. Stabilized tunable diode laser measurements of the P(2) line in the 13CO fundamental band broadened by helium at temperatures between 11.5 and 298.6 K [J]. J. Mol. Spectrosc., 2001, 207:113-119.
MONDELAIN D, CLAUDE C P, MANTZ A W, et al.. Performance of a Herriott cell, designed for variable temperatures between 296 and 20 K [J]. Journal of Molecular Spectroscopy, 2007, 241:18-25.
PEREZ-DELGADO Y, MANZANARES C E. Low temperature cavity ring down spectroscopy with off-axis alignment: application to the A- and γ-bands of O2 in the visible at 90 K [J]. Appl. Phys. B, 2012, 106:971-978.
高伟,曹振松,袁怿谦,等. 可连续控温低温吸收池的研制及其应用 [J]. 光谱学与光谱分析,2012,32(3):858-861. GAO W, CAO ZH S, YUAN Y Q, et al.. Design of a controllable low temperature cell and application [J]. Spectroscopy and Spectral Analysis, 2012, 32(3):858-861. (in Chinese)
PREDOI-CROSS A, LIU W, MURPHY R, et al.. Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012←00001 and 30013← 00001 bands [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010,111:1065-1079.
0
浏览量
353
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构