浏览全部资源
扫码关注微信
1. 上海理工大学 光电信息与计算机工程学院 上海,200093
2. 上海理工大学 上海医疗器械高等专科学校 上海,200093
3. 阿德雷德大学 化工学院, 澳大利亚 阿德雷德,5005
收稿日期:2014-01-09,
修回日期:2014-03-05,
纸质出版日期:2014-10-25
移动端阅览
孔平, 杨晖, 林伟民等. 动态散斑对比度颗粒测量法[J]. 光学精密工程, 2014,22(10): 2633-2638
KONG Ping, YANG Hui, LIN Wei-min etc. Measurement of particle sizes by contrast of dynamic laser speckle[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2633-2638
孔平, 杨晖, 林伟民等. 动态散斑对比度颗粒测量法[J]. 光学精密工程, 2014,22(10): 2633-2638 DOI: 10.3788/OPE.20142210.2633.
KONG Ping, YANG Hui, LIN Wei-min etc. Measurement of particle sizes by contrast of dynamic laser speckle[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2633-2638 DOI: 10.3788/OPE.20142210.2633.
提出了基于线阵CCD相机的动态散斑对比度颗粒测量方法和系统
用于解决动态光散射研究涉及的动态光散射软件相关算法运算量大、实时性较差
以及不能测量高黏度溶液中颗粒的问题.首先
从传统动态光散射理论出发
基于光学统计理论
建立了动态散斑对比度的模型.然后
根据Siegert公式
推导了动态散斑对比度与动态散射光场自相关函数的关系.最后
得到了低浓度和高浓度下动态散斑对比度与颗粒粒径的关系.分别对粒径分布为(490±20) nm的标准乳胶球颗粒水溶液和纳米二氧化钛粉体(粒径分布:450~500 nm)甘油溶液进行了测量.结果表明:动态散斑对比度测量法的运算量小
且能测量高黏度溶液中的纳米颗粒
重复测量误差小于2%
满足了动态光散射的国标要求.
A new measuring method and a measuring system for particle sizes based on the contrast of dynamic laser speckles were proposed by using a linear CCD camera. It was used to overcome the larger operation calculation and poor real time ability of the Dynamic Light Scattering (DLS) software and to solve the problem that the classic DLS could not measure the particles in high viscosity solution. Firstly
a model for the contrast of dynamic laser speckles was established based on the optical statistical theory and the classic DLS theory. Then
the relationship between the contrast of dynamic laser speckle and the autocorrelation function of dynamic light scattering was derived according to the Siegert formulation. Finally
the relationships between the contrast of dynamic laser speckle and the particle size in low and high concentrations were established. With the proposed method
aqueous latex spheres with diameter distribution of (490±20) nm and nano titanium dioxide powder glycerol solution with diameter distribution of 450-500 nm were measured under high and low concentrations. The results show that the proposed method not only has a small amount of computation
but also is able to measure the nanoparticles in the high viscosity solution. The measurement repeatability error of the new method is less than 2%
which satisfies the needs of national standard for dynamic light scattering.
GB/T 19627-2005/ISO 13321:1996. Particle size analysis-photon correlation spectroscopy[S]. 2005-08-01.
BORSALI R, PECORA R. Soft Matter Characterization[M]. Netherlands: Springer, 2008.
YANG H, YANG H M, KONG P, et al.. Concentration measurement of particles by number fluctuation in dynamic light backscattering[J]. Powder Technology, 2013, 246 (9): 499-503.
MAGATTI D, FERRI F. Fast multi-tau real-time software correlator for dynamic light scattering[J]. Applied Optics, 2001, 40(24):4011-4021.
FERRI F,MAGATTI D. Hardware simulator for photon correlation spectroscopy [J]. Review of Scientific Instruments, 2003, 74(10):4273-4279.
申晋, 郑刚, 李孟超,等. PCS 颗粒测量技术中软件相关方法的研究[J]. 仪器仪表学报, 2003, 24(6): 585-588. SHEN J, ZHENG G, LI M CH, et al.. The study on the estimation of autocorrelation function in PCS particle sizing technique[J]. Chinese Journal of Scientific Instrument, 2003, 24(6):585-588. (in Chinese)
YANG H, ZHENG H, LI M C. A new cheaper dynamic light scattering particle sizing method using counting board[J]. Lasers in Engineering, 2008, 18(3-4):153-161.
杨晖,郑刚,张仁杰. 用动态光散射时间相干度法测量纳米颗粒粒径[J]. 光学 精密工程,2011,19(7):1546-1551. YANG H, ZHENG G, ZHANG R J. Measurement of nanoparticle sizes by variance of temporal coherence of dynamic light scattering[J]. Opt. Precision Eng., 2011, 19(7):1546-1551. (in Chinese)
杨晖, 郑刚, 王雅静, 等. 用动态光散射现代谱估计法测量纳米颗粒[J]. 光学 精密工程, 2010, 18(9): 1996-2001. YANG H, ZHENG G, WANG Y J. Measurement of nano-particle by modern spectral estimation of dynamic light scattering[J]. Opt. Precision Eng., 2010, 18(9): 1996-2001. (in Chinese)
LEE H Y, LIN H Y, WHITE J D, et al.. High-speed low-cost correlator for single molecule fluorescence correlation spectroscopy[J]. SPIE, 2009, 7185(2):71850R-8.
PUSEY P N, MEGEN W V. Dynamic light scattering by non-ergodic media[J]. Physica A, 1989,157(1):705-741.
GOODMAN J. Statistical Optics[M]. New York: Wiley-Interscience, 1985.
PINE D J, WEITZ D A, CHAIKIN P M, et al.. Diffusing wave spectroscopy[J]. Phys. Rev. Lett., 1988, 12(60):1134-1137.
KIRKPATRICK S J, DUNCAN D D. Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging [J]. Opt. Lett., 2008, 33(2):2886-2888.
王雅静, 申晋, 郑刚, 等. Tikhonov正则化与多重网格技术相结合的动态光散射反演[J]. 光学 精密工程, 2012, 20(5): 963-971. WANG Y J, SHEN J, ZHENG G, et al.. Inversion of dynamic light scattering combining Tikhonov regularization with multi-grid technique[J]. Opt. Precision Eng., 2012, 20(5):963-971. (in Chinese)
GB/T 19627-2005/ISO13321:1996. Particle size analysis-photon correlation spectroscopy[S]. Standardization Administration of P.R.C., 2005-08-01.
0
浏览量
557
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构