浏览全部资源
扫码关注微信
中国航空工业集团 西安飞行自动控制研究所,陕西 西安,710065
收稿日期:2014-01-23,
修回日期:2014-03-12,
纸质出版日期:2014-10-25
移动端阅览
王玉朝, 滕霖, 孙香政等. 真空封装硅微陀螺品质因数的标定[J]. 光学精密工程, 2014,22(10): 2708-2714
WANG Yu-zhao, TENG Lin, SUN Xiang-zheng etc. Quality factor measurement of vacuum-packaged microgyroscopes[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2708-2714
王玉朝, 滕霖, 孙香政等. 真空封装硅微陀螺品质因数的标定[J]. 光学精密工程, 2014,22(10): 2708-2714 DOI: 10.3788/OPE.20142210.2708.
WANG Yu-zhao, TENG Lin, SUN Xiang-zheng etc. Quality factor measurement of vacuum-packaged microgyroscopes[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2708-2714 DOI: 10.3788/OPE.20142210.2708.
建立了真空封装陀螺的无激励欠阻尼二阶系统模型
用于测量真空封装硅微陀螺的品质因数.对该模型进行理论推导
提出了一种时延常数测试方法.该方法首先利用锁相环路
驱动陀螺实现闭环谐振
获得较大的初始振幅.然后关断激励信号
通过放大电路和解调电路
记录硅微陀螺振荡幅值的衰减过程;用计算机通过Matlab GUI实时采集并拟合振幅衰减曲线
获得时间常数.最后
通过时间常数解算获得真空封装硅微陀螺的品质因数.对真空封装硅微陀螺品质因数的实验测试结果表明:该方法实测数据与理论分析模型的拟合度为99.999%
测试重复性为4.03%
优于传统的扫频测试法的重复性.对比时延常数法与锁相放大器扫频测试法的测试数据显示:时延常数法具有更高的测量精度和更高的测试效率.该方法可以推广到其它高真空封装MEMS器件的品质因数测量.
A under-damping second-order system model without excitation was proposed to measure the quality factor(
Q
factor) for a vacuum packaged microgyroscope. The model was analyzed theoretically and a time decay constant method was presented. Firstly
an initial displacement of the seismic mass was obtained by exciting the microgyroscope to implement a closed loop resonance with a Phase Locked Loop (PLL). By releasing the excitation signal
the vibration amplitude decay curve was then acquired through demodulating the vibrating displacement signal and was transferred to a computer by a Field Programming Gate Array(FPGA) hardware and Matlab GUI software simultaneously. Finally
the
Q
factor of the vacuum packaged microgyroscope was calculated by exponentially fitting the envelope of decay curve. The experimental results show that the
R
-square value of the fitted curve reaches up to 99.999% as compared to the measured data and the repeatability of the tested
Q
factor is 4.03%
much better than that of the frequency sweeping method. Comparing the measurement data of decay constant method and frequency sweeping method
the former shows better measurement accuracy and higher efficiency. The method is also suitable for the measurements of microsensors with high
Q
factors.
姜劭栋, 裘安萍, 施芹, 等. 硅微陀螺仪正交耦合系数的计算及验证[J]. 光学 精密工程, 2013, 21(1): 87-93. JIANG SH D, QIU A P, SHI Q, et al.. Calculation and verification of quadrature coupling coefficients of silicon microgyroscope [J]. Opt. Precision Eng., 2013, 21(1): 87-93. (in Chinese)
SCHOFIELD A R, TRUSOV A A, SHKEL A M. Versatile vacuum packaging for experimental study of resonant MEMS[C]. Micro Electro Mechanical System(MEMS), 2010 IEEE 23rd International Conference, 2010: 516-519.
施芹, 苏岩, 裘安萍, 等. MEMS陀螺仪器件级真空封装技术[J]. 光学 精密工程, 2009, 17(8):1987-1992. SHI Q, SU Y, QIU A P, et al.. Device level vacuum packaging technologies of MEMS gyroscopes[J]. Opt. Precision Eng., 2009, 17(8): 1987-1992. (in Chinese)
贾方秀, 裘安萍, 施芹, 等. 硅微振动陀螺仪设计与性能测试[J]. 光学 精密工程, 2013, 21(5): 1272-1281. JIA F X, QIU A P, SHI Q, et al.. Design and experiment of micro machined vibratory gyroscope [J]. Opt. Precision Eng., 2013, 21(5):1272-1281. (in Chinese)
NIEDERMAYER A O, BRUNNMAIER T V, SELL J, et al.. Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices[J]. Meas.Sci. Technol., 2012, 23 085107.
RAJAMANI V, BUNTING C F, WEST J C. Differences in quality factor estimation in frequency and time domain[C]. Electromagnetic Compatibility(APEMC), 2012:505-508.
JEONG C, SEOK S, LEE B, et al.. A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes[J]. J. Micromech. Microeng, 2004,14(2004):1530-1536.
BRUSCHI P, NANNINI A P F. Electrical measurements of the quality factor of microresonators and its dependence on the pressure[J]. Sensors and Actuators A, 2004, 114:21-29.
WANG L Y, DU X H, SU Y ZH, et al.. Accuracy analysis of quality factor measurement based on time domain method for MEMS resonators[C]. The 3rd International Conference of CSMNT, 2012.
MATHIAS H, PARRAIN F, GILLES J P, et al.. Architecture for integrated MEMS resonators quality factor measurement[J]. DTIP of MEMS & MOEMS, 2007.
BRAGHIN F, RESTA F, LEO E, et al.. Nonlinear dynamics of vibrating MEMS [J]. Sensors and Actuators A, 2007, 134: 98-108.
SAUKSKI M, AALTONEN L, SALO T, et al.. Interface and control electronics for a bulk micromachined capacitive gyroscope [J]. Sensors and Actuators A, 2008, 147:183-193.
0
浏览量
680
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构