浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2013-10-15,
修回日期:2013-11-18,
纸质出版日期:2014-10-25
移动端阅览
王志, 曹玉岩, 周超等. 柔性压电智能反射面的静态形状控制[J]. 光学精密工程, 2014,22(10): 2715-2724
WANG Zhi, CAO Yu-yan, ZHOU Chao etc. Static shape control of flexible piezoelectric smart reflectors[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2715-2724
王志, 曹玉岩, 周超等. 柔性压电智能反射面的静态形状控制[J]. 光学精密工程, 2014,22(10): 2715-2724 DOI: 10.3788/OPE.20142210.2715.
WANG Zhi, CAO Yu-yan, ZHOU Chao etc. Static shape control of flexible piezoelectric smart reflectors[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2715-2724 DOI: 10.3788/OPE.20142210.2715.
建立了柔性压电智能反射面系统的有限元模型和优化控制模型
给出了结构力学建模和形状控制方法以及相应的优化算法.首先
将蜂窝夹层结构的压电智能反射面等效为多层复合板;基于Kirchhoff假设和经典层合板理论
根据虚功原理推导了柔性压电智能反射面的有限元方程;采用蜂窝等效理论计算了反射面蜂窝夹芯等效弹性模量
有限元模型中的单元为四节点四边形压电板单元
每个作动器单元中引入额外的电势自由度.然后
根据建立的有限元方程
推导了反射面变形均方根误差与作动器控制电压的关系式;以均方根误差最小为优化目标
建立了柔性压电智能发射面的静态形状控制优化模型;采用Lagrange乘子法处理了压电作动器工作电压的限制.最后
用提出的方法分析已有模型并验证建模方法.以600 mm口径的平面柔性智能反射面为例
验证了采用压电陶瓷贴片对反射面静态形状控制的可行性及优化算法有效性.仿真结果表明:通过控制压电陶瓷贴片作动器
可以使反射面的静态形状误差减小97%以上
而且作动器的控制电压均在极限电压范围内.
The finite element formulation of a flexible piezoelectric smart reflector was presented based on Kirchhoff classical laminated theory
and its structural mechanic modeling and optimization algorithms were investigated. Firstly
the smart reflector with the honeycomb core was modeled with the equivalent laminate plate theory
and its finite element formulation was derived according to virtual work theory. The honeycomb core equivalent elastic modulus was calculated by using equivalent theory. Then
a simple four-node quadrilateral element was used in the model
and one electric potential degree of freedom was introduced to each active element. Accordingly
the relation between the mean square root error of reflector and the control voltages of actuators was derived
the optimization model for static shape control was created and the voltage limitation for piezoelectric actuator patches was imposed to maintain its control voltage within a practical range. The optimal control voltages were determined by using Lagrange multipliers to minimize the Root Mean Square (RMS) error. Finally
a numerical example of plane smart reflector was given to demonstrate the feasibility of smart mirror concept and the effectiveness of optimization algorithm. Simulation results indicate that the square root error of the smart reflector is reduced by above 90%
and the control voltage of each actuator is in a practical range.
刘振宇,罗霄,邓伟杰,等. 大口径非球面组合加工技术[J]. 光学 精密工程,2013,21(11):2791-2797. LIU ZH Y,LOU X,DENG W J,et al..Multi-mode optimization technique for large optical aspheric mirror [J].Opt. Precision Eng.,2013,21(11):2791-2797.(in Chinese)
叶伟楠,董吉洪. 大口径主镜轻量化结构参数的优化设计[J]. 中国光学,2012,5(3):222-228. YE W N,DONG J H.Optimized design for light weight structural parameters for large-aperture primary mirror[J].Chinese Optics,2012,5(3):222-228.(in Chinese)
张景旭. 地基大口径望远镜系统结构技术综述[J]. 中国光学,2012(4):327-336. ZHANG J X.Overview of structure technologies of large aperture ground-based telescopes[J].Chinese Optics,2012(4):327-336.(in Chiense)
范磊, 张景旭, 吴小霞, 等. 大口径轻量化主镜边缘侧向支撑的优化设计[J]. 光学 精密工程,2012,20(10):2207-2213. FAN L, ZHANG J X, WU X X, et al.. Optimum design of edge lateral support for large aperture lightweight primary mirror[J]. Opt. Precision Eng., 2012,20(10):2207-2213.(in Chinese)
曾春梅,郭培基,余景池. 0.5 m超薄镜主动支撑面形校正及实验[J]. 光学 精密工程,2010,18(3):570-578. ZENG C M, GUO P J, YU J C. Demonstration and analysis on correction of 0. 5 m ultra-thin mirror with active supports[J]. Opt. Precision Eng., 2010,18(3):570-578.(in Chinese)
李宏壮,林旭东,刘欣悦,等. 400mm薄镜面主动光学实验系统[J]. 光学 精密工程,2009,17(9):2076-2083. LI HZ, LIN XD, LIU XY, et al. Experiment system of 400 mm thin-mirror active optics[J]. Opt. Precision Eng., 2009,17(9):2076-2083.(in Chinese)
CHEN PC, ROMEO RC. Advances in composite mirror and telescope technology[J]. Proceedings of SPIE, 2004, 5382:397-403.
CHEN P C, BOWERS C W, A CONTENT D, et al.. Advances in very lightweight composite mirror technology [J]. Optical Engineering, 2000,39(9):2320-2329.
PARADIES R,HERTWIG M. Shape control of adaptive composite reflectors[J]. Composites Part B: Engineering, 1999, 30(1):65-78.
PARADIES R, HERTWIG M, ELSPASS WJ. Shape control of an adaptive mirror at different angles of inclination [J]. Journal of Intelligent Material Systems and Structures, 1996, 7(2):203-210.
AGRAWAL B N, TREANOR K E. Shape control of a beam using piezoelectric actuators[J]. Smart Materials & Structures, 1999, 8(6):729-739.
SUN D, TONG L. Design optimization of piezoelectric actuator patterns for static shape control of smart plates[J]. Smart Materials & Structures, 2005, 14:1353-1362.
MASTERS I G, EVANS K E. Models for the elastic deformation of honeycombs[J]. Composite Structures, 1996, 35(4):403-422.
GIBSON L J, ASHBY M F, SCHAJER G S, et al.. The mechanics of two-dimensional cellular materials [J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1982, 382(1782):25-42.
MEHTA P K. Moment actuator influence function for flat circular deformable mirrors[J]. Advances in Optical Structure Systems, 1990, 29:2-19.
LIU CHCH-H. Structural analysis and design of adaptive lightweight mirrors[D]. USA: Massachusetts Institute of Technology, 1993.
REDDY J N. Mechanics of laminated composite plates and shells: theory and analysis[M]. Second ed. New York: CRC PRESS, 1945.
CHEN DH. Equivalent flexural and torsional rigidity of hexagonal honeycomb[J]. Composite Structures, 2011, 93(7):1910-1917.
REDDY J N. On laminated composite plates with integrated sensors and actuators[J]. Engineering Structures, 1999, 21(7):568-593.
ZIENKIEWICZ O C, TAYLOR R L. The Finite Element Method 5th edition[M]. London: McGraw-Hill, 2000.
MOITA J, SOARES C,SOARES C. Geometrically non-linear analysis of composite structures with integrated piezoelectric sensors and actuators [J]. Composite Structures, 2002, 57:253-261.
王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003. WANG XC. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
NELSON J E, LUBLINER J, MAST TS. Telescope Mirror Supports: Plate Deflections On Point Supports [J]. Advanced Technology Optical Telescopes, 1982, 332:212-228.
PARADIES R. Designing quasi-isotropic laminates with respect to bending[J]. Composites Science and Technology, 1996, 56(4):461-472.
0
浏览量
617
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构