浏览全部资源
扫码关注微信
1. 北京航空航天大学 仪器科学与光电工程学院 北京,100191
2. 北京航空航天大学 惯性技术国家级重点实验室 北京,100191
收稿日期:2013-11-24,
修回日期:2014-02-20,
纸质出版日期:2014-10-25
移动端阅览
崔培玲, 潘智平, 李海涛. 基于α阶逆系统的两自由度主被动磁悬浮转子解耦控制[J]. 光学精密工程, 2014,22(10): 2747-2756
CUI Pei-ling, PAN Zhi-ping, LI Hai-tao. Decoupling control of 2-DOF passive and active hybrid magnetically suspended rotor based on α-order inverse system[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2747-2756
崔培玲, 潘智平, 李海涛. 基于α阶逆系统的两自由度主被动磁悬浮转子解耦控制[J]. 光学精密工程, 2014,22(10): 2747-2756 DOI: 10.3788/OPE.20142210.2747.
CUI Pei-ling, PAN Zhi-ping, LI Hai-tao. Decoupling control of 2-DOF passive and active hybrid magnetically suspended rotor based on α-order inverse system[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2747-2756 DOI: 10.3788/OPE.20142210.2747.
针对主被动磁悬浮控制力矩陀螺(CMG)磁轴承两径向平动自由度之间存在较强耦合的问题
提出采用阶逆系统方法对主被动磁轴承系统进行解耦控制.首先
根据主被动磁轴承的结构特点
建立了主被动磁悬浮转子径向通道平动力模型以及动力学模型;利用上述模型分析了两径向自由度之间的耦合特性
并对系统进行可逆性分析
得到了原磁轴承系统的阶逆系统模型.然后
将原系统与阶逆系统组合得到二阶积分线性系统
利用最优控制器实现闭环控制.最后
对本文方法进行了仿真及实验.结果表明
当
x
向有40 m位移阶跃和18 m幅值的正弦干扰时
利用本文方法可将
y
向位移跳动控制在PID控制方法的13.6%和17.9%
实现了主被动磁悬浮转子两径向平动通道之间的解耦控制.
As the Passive and Active Hybrid Magnetic Bearing (PAHMB) in a Magnetic Suspended Control Moment Gyroscope (MSCMG) has the dynamic model coupling between the two radial degrees of freedom (DOF)
this paper proposes an -order inverse system method to perform the decoupling control. A radial channel magnetic force model and a dynamic model for the PAHMB magnetic bearing were established based on the structure characteristics of the hybrid magnetic bear.Then
the model was used to analyze the coupling characteristic between the two radial degrees of freedom. In order to obtain the inverse system model of the PAHMB system
the reversibility of the original system was analyzed. The optimal controller was designed to stabilize the new 2-order integral system by consisting of the original system and the inverse system. Experimental results show that when the
x
-axis is influenced by 40 m stepping and 18m sine wave
the
y
-axis displacement with decoupling method will be controlled 13.6% and 7.9% that with PID method. These results demonstrate the effectiveness of the method above in decoupling control of the PAHMB.
楼晓春,吴国庆. 主动磁轴承系统的自适应滑模控制[J]. 电工技术学报. 2012, 27(1):142-147. LOU X CH, WU G Q. Adaptive sliding mode control for an active magnetic bearing system [J]. Transactions of China Electrotechnical Society, 2012,27(1):142-147(in Chinese)
陶涛,刁小燕,张维煌,等. 基于DRFNN逆的交流主动磁轴承解耦控制[C]. 第31届中国控制大会,合肥, 2012, 7:4628-4633. TAO T, DIAO X Y, ZHANG W H, et al.. DecouPling Control of AC Active Magnetic Bearings Based on DRFNN Inverse[C]. Proceedings of the 31st Chinese Control Conference. Hefei, 2012, 7:4628-4633.(in Chinese)
IVN G H, XAVIER K, JULIEN G,et al.. Model-based decoupling control method for dual-drive gantry stages: A case study with experimental validations[J]. Control Engineering Practice. 2013, 21(3): 298-307.
BAASANSUREN J,AKHTAR A K,MIGUEL S. Regularization for state constrained optimal control problems by half spaces based decoupling[J]. Systems & Control Letters. 2012, 61(6): 707-713.
GRABNER H, AMRHEIN W, SILBER S, et al.. Nonlinear feedback control of a bearingless brushless dc motor[J]. IEEE/ASME Trans. Mechatronics, 2010, 15(1): 40-47.
孙玉坤,朱志莹. 三自由度混合磁轴承最小二乘向量机逆模辨识与解耦控制[J]. 中国电机工程学报. 2010, 30(15):112-117. SUN Y K, ZHU ZH Y. Inverse-model Identification and decoupling control based on least squares support vector machine for 3 degree-of-freedom hybrid magnetic bearing[J]. Proceedings of the CSEE. 2010, 30(15):112-117.(in Chinese)
武涵,徐春广,肖定国,等. 五自由度磁轴承系统的α阶逆系统解耦控制[J]. 北京理工大学学报. 2010, 30(9): 1065-1069. WU H, XU CH G, XIAO D G, et al.. Decoupling control of 5-D of magnetic bearing system using α order inverse system [J]. Transactions of Beijing Institute of Technology Theory. 2010, 30(9): 1065-1069.(in Chinese)
杨益飞,阮颖,张维煜,等. 五自由度交流混合磁轴承α阶逆系统解耦控制[C]. 第30届中国控制大会,烟台,2011, 7: 278-282. YANG Y F, RUAN Y, ZHANG W Y, et al.. Decoupling Control of 5 Degrees of Freedom AC Hybrid Magnetic Bearings Based on Inverse System Method[C]. Proceedings of the 30th Chinese Control Conference. Yantai, 2011, 7:278-282.(in Chinese)
FANG J C, REN Y. High-Precision Control for a Single-Gimbal Magnetically Suspended Control Moment Gyro Based on Inverse System Method[J]. IEEE Transactions on Industrial Electronics. 2011,58(9):4331-4342.
房建成,杨磊, 孙津济,等. 一种新型磁悬浮飞轮用永磁偏置径向磁轴承[J]. 光学 精密工程, 2008,16(3):444-451. FANG J CH, YANG L, SUN J J, et al.. Novel permanent-magnet bias radial magnetic bearing used in magnetical suspended flywheel [J]. Opt. Precision Eng., 2008,16(3):444-451. (in Chinese)
FANG J C, WEN T. The Exact Feedback Linearization Control for the 2-DOF Flywheel Suspended by the Passive and Active Hybrid Magnetic Bearings[C]. The International Conference on Electronics, Communications and Control (ICECC 2011). Ningbo, P.R. China, 2011, 5: 2922-2926.
朱熀秋,黄振跃,阮颖,等. 交流主动磁轴承电主轴线性二次型最优控制[J]. 电机与控制学报, 2012, 16(10):71-78. ZHU H Q, HUANG ZH Y, RUAN Y, et al.. Linear quadratic optimal control of electric spindle supported by AC active magnetic bearings [J]. Electric Machines and Control 2012, 16(10):71-78. ( in Chinese)
张嗣瀛, 高立群. 现代控制理论[M]. 北京:清华大学出版社, 2006. ZHANG S Y, GAO L Q. Modern Control Theory[M]. Beijing: Tsinghua University Press, 2006.(in Chinese)
张剀,赵雷,赵鸿宾. 磁轴承飞轮控制系统设计中LQR方法的应用研究[J]. 机械工程学报. 2004, 40(2):127-131. ZHANG K, ZHAO L, ZHAO H B. LQR method research on control of the flywheel system suspended by AMBS [J]. Chinese Journal of Mechanical Engineering. 2004, 40(2):127-131.(in Chinese)
刘刚, 潘明健. 基于FPGA的磁悬浮飞轮用自修复磁轴承控制器的设计[J]. 光学 精密工程. 2009, 17(11):2762-2769. LIU G, PAN M J. Design of FPGA-based self-repairing AMB controller for MSFW [J]. Opt. Precision Eng., 2009, 17(11):2762-2769.(in Chinese)
刘彬, 房建成, 刘刚. 基于TMS320C6713B+FPGA数字控制器实现磁悬浮飞轮主动振动控制[J]. 光学 精密工程. 2009, 17(1):151-157. LIU B, FANG J CH, LIU G. Implementation of active vibration control for magnetically suspended flywheels based on TMS320C6713B+FPGA digital controller [J]. Opt. Precision Eng., 2009, 17(1):151-157(in Chinese)
0
浏览量
508
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构