浏览全部资源
扫码关注微信
中国计量学院 机电工程学院,浙江 杭州,310018
收稿日期:2014-02-20,
修回日期:2014-04-09,
纸质出版日期:2014-10-25
移动端阅览
许素安, 谢敏, 孙坚等. 基于压电陶瓷光电相移驱动的大行程纳米定位系统[J]. 光学精密工程, 2014,22(10): 2773-2778
XU Su-an, XIE Min, SUN Jian etc. Long range nano-positioning system based on optoelectronic phase-shift for piezoelectric actuator[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2773-2778
许素安, 谢敏, 孙坚等. 基于压电陶瓷光电相移驱动的大行程纳米定位系统[J]. 光学精密工程, 2014,22(10): 2773-2778 DOI: 10.3788/OPE.20142210.2773.
XU Su-an, XIE Min, SUN Jian etc. Long range nano-positioning system based on optoelectronic phase-shift for piezoelectric actuator[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2773-2778 DOI: 10.3788/OPE.20142210.2773.
由于压电陶瓷驱动器作纳米定位控制系统驱动元件会导致定位过程中出现超调及振荡现象
故提出了一种新的基于外差干涉仪和自制高频相移电路的光电相移压电陶瓷驱动方法.实验论证了在严格控制的实验环境下
压电陶瓷能实现自主位置锁定并以纳米量级步距值被逐步推进.步距值可控的压电陶瓷驱动器与商用宏动平台结合
可实现纳米精度重复性的大行程定位系统.实验结果表明
对于5 mm往返行程的位移
在靠近目标处执行理论值为5 nm步距值的步进位移时
系统的定位重复性精度小于1 nm.该定位方法规避了压电陶瓷的机械非线性误差
具有系统架构简单
定位速度快等优点
可应用于当前纳米科技和超精密加工等领域.
As overshoot and oscillation phenomena will occur when a piezoelectric ceramic actuator is taken as a driving element for nano-positioning systems
this paper proposes a new piezoelectric ceramic displacement control method based on a home made high frequency phase-shifting electronic circuit and a heterodyne interferometer. On the experiments
it demonstrates that the piezoelectric ceramic could be locked actively and be driven step by step in a nanometric scale under a strictly controlled experimental environment. This controlled stepper piezoelectric actuator combined with a commercial macro stage achieves a displacement system with nanometric repeatability over a millimeter range. Experimental results show that this system has a repeatability smaller than 1 nm when it has over back and forth displacement of 5 mm and executes the step by step displacement with the step value of 5 nm near the target position. The positioning method avoids the mechanical defects of piezoelectric actuator and is characteristics by simpler structure
faster positioning and suitable for numerous applications in nanotechnology and ultra precision machining .
刘振,李岩. 计量型扫描显微镜中大行程纳米定位系统研制[J]. 光电子·激光2010,21(7):957-962. LIU ZH, LI Y. Development of large range positioning system used in metrological scanning microscope [J]. Journal of Optoelectronics·Laser, 2010, 21(7):957-962. (in Chinese)
夏瑞雪,陈晓怀,卢荣胜,等. 新型纳米三坐标测量机误差检定方法的研究[J]. 电子测量与仪器学报,2010,24(3):250-256. XIA R X,CHEN X H,LU R SH, et al.. Research on error detection methods for a novel nano-CMM [J]. Journal of Electronic Measurement and Instrument, 2010, 24(3):250-256. (in Chinese)
李伟,高思田,卢明臻,等. 计量型原子力显微镜的位移测量系统[J]. 光学 精密工程,2012, 20(4):796-802. LI W, GAO S T, LU M ZH, et al.. Position measuring system in metrological atomic force microscope [J]. Opt. Precision Eng., 2012, 20(4):796-802.(in Chinese)
HAITJEM A H. Achieving traceability and sub-nanometer uncertainty using interferometric techniques [J]. Measurement Science and Technology, 2008, 19:1-6.
张钟华. 计量测试技术的新动态[J]. 中国计量学院学报, 2009, 20(1):1-7. ZHANG ZH H. A new trend in the technology of measurement and testing [J]. Journal of China University of Metrology, 2009, 20(1):1-7.(in Chinese)
张金龙, 刘阳,郭怡倩,等. 纳米级超精密定位工作台的研究[J]. 机械工程学报,2011,47(9):187-192. ZHANG J L, LIU Y,GUO Y Q, et al.. Research on ultra-precision nanopositioning stage[J]. Journal of Mechanical Engineering, 2011,47(9):187-192. (in Chinese)
XU S,CHASSAGNE L,TOPCU S, et al.. Polarimetric interferometer for measuring the nonlinearity error of a heterodyne interferometric displacement system [J]. Chinese Optics Letters, 2013, 11(6):061201-1:5.
CHASSAGNE L, WAKIM M, XU S A, et al.. 2D nano-positioning system with a sub-nanometric repeatability over millimetre displacement range[J]. Measurement Science and Technology, 2007,18: 3267-3272.
陈辉,谭永红,周杏鹏,等. 压电陶瓷执行器的动态模型辨识与控制[J]. 光学 精密工程, 2012, 20(1):88-95. CHEN H, TAN Y H, ZHOU X P, et al.. Identification and control of dynamic modeling for piezoceramic actuator [J]. Opt. Precision Eng.,2012, 20(1):88-95. (in Chinese)
朱维彬,朱善安,叶树亮,等. 基于相位跟踪原理的超精密定位平台研究[J]. 仪器仪表学报,2012,33(10):2301-2306. ZHU W B, ZHU SH A, YE SH L, et al.. Research on ultra-precision positioning platform based on phase tracking[J]. Chinese Journal of Scientific Instrument, 2012,33(10):2301-2306. (in Chinese)
赖志林,刘向东,耿洁,等. 压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学 精密工程, 2011, 19(6):1281-1290. LAI ZH L, LIU X D, GENG J, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse preisach compensation [J]. Opt. Precision Eng., 2011,19(6):1281-1290. (in Chinese)
张利军,杨立新,郭立东,等. 压电陶瓷驱动平台自适应输出反馈控制[J]. 自动化学报2012, 38(9):1550-1556. ZHANG L J, YANG L X, GUO L D, et al..Adaptive output feedback control for piezo-actuator driven stage [J]. Acta Automatica Sinica, 2012, 38(9):1550-1556. (in Chinese)
王岳宇,赵学增. 补偿压电陶瓷迟滞和蠕变的逆控制算法[J]. 光学 精密工程,2006,14(6):1032-1040. WANG Y Y, ZHAO X Z. Inverse control algorithm to compensate the hysteresis and creep effect of piezoceramic[J].Opt. Precision Eng., 2006, 14(6):1032-1040.(in Chinese)
陈代谢,殷伯华,林云生,等. 大范围高速原子力显微镜的前馈反馈混合控制方法[J]. 光学 精密工程,2011, 19(4):836-843. CHEN D X, YIN B H, LIN Y SH, et al.. Feed-forward and feed-back controller for large-range and high speed AFM[J]. Opt. Precision Eng.,2011, 19(4):836-843.(in Chinese)
EDLEN B. The refractive index of air [J]. Metrologia, 1966, 2: 71-80.
BOBROFF N. Critical alignment in plane mirror interferometry [J]. Precision Engineering,1993,15(1):33-38.
WU C, SU C. Non-linearity in measurements of length by optical interferometry [J]. Measurement Science & Technology, 1996,7:62-68.
0
浏览量
857
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构