浏览全部资源
扫码关注微信
南方医科大学 生物医学工程学院,广东 广州,510515
收稿日期:2014-03-06,
修回日期:2014-03-21,
纸质出版日期:2014-10-25
移动端阅览
周凌宏, 李翰威, 徐圆等. 锥束CT圆轨道扫描的几何校正[J]. 光学精密工程, 2014,22(10): 2847-2854
ZHOU Ling-hong, LI Han-wei, XU Yuan etc. Geometry calibration for circular trajectory scanning in cone-beam CT[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2847-2854
周凌宏, 李翰威, 徐圆等. 锥束CT圆轨道扫描的几何校正[J]. 光学精密工程, 2014,22(10): 2847-2854 DOI: 10.3788/OPE.20142210.2847.
ZHOU Ling-hong, LI Han-wei, XU Yuan etc. Geometry calibration for circular trajectory scanning in cone-beam CT[J]. Editorial Office of Optics and Precision Engineering, 2014,22(10): 2847-2854 DOI: 10.3788/OPE.20142210.2847.
借鉴针孔摄像机模型
提出了一种锥束CT圆轨道扫描的几何校正方法
用于有效降低由系统几何误差所带来的重建图像伪影.首先
利用共轴旋转的钢球在探测器上所成椭圆像的特征求取圆环点;然后
结合极线约束条件建立绝对二次曲线像的约束方程
通过线性求解获得系统的内参数;最后
在求得内参数的基础上
通过几何方法和椭圆参数建立系统的外参数方程
求解系统的外参数. 实验结果显示:利用本文方法进行锥束CT几何校正的内参数标定精度和外参数标定精度分别为0.193%和0.2%.本文方法能够精确地求解出所有失真参数
建立完整的几何模型
消除重建时因几何误差所带来的几何伪影
而且校正体模制作简单
应用性较强
适用于所有圆轨道CT.
Based on the pinhole camera model
a geometry calibration method for circular trajectory scanning in cone-beam CT was proposed to reduce the geometric artifact of a reconstructed image caused by system errors. Firstly
the properties of the projected ellipses on the detector generated by the coaxial rotating steel balls were used to deduce circular points. Then
the constraint equations of absolute conic were established based on the polar constraint condition and the intrinsic parameters were obtained by linearly calculation. Finally
the extrinsic parameters can be figured out with the geometry method and ellipse parameters based on the intrinsic parameters. Experimental results indicate that the relative precision of intrinsic parameters and the extrinsic parameters are respectively 0.193% and 0.2% while using this method to calibrate the cone-beam CT system. It concludes that the proposed calibration process is able to solve all distortion parameters
build geometric model and eliminate the artifacts caused by the misaligned geometry on the reconstruction images.The method is characterized by simpler modelling
stronger application ability
and could be used in all circular orbit CTs.
FELDKAMP L A, DAVIS L C, KRESS J W. Practical cone-beam algorithm[J]. JOSA A, 1984,1(6):612-619.
NOO F, CLACKDOYLE R, MENNESSIER C, et al.. Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography[J]. Phys Med Biol, 2000,45(11):3489-3508.
YANG K, KWAN A L, MILLER D F, et al.. A geometric calibration method for cone beam CT systems[J]. Med Phys, 2006,33(6):1695-1706.
张峰, 江桦, 闫镔, 等. 锥束CT圆轨迹半覆盖扫描的几何校正[J]. 光学 精密工程, 2013,21(7):1659-1665. ZHANG F, JIANG H, YAN B, et al.. Geometric calibration for half-cover scanning in circular cone-beam CT[J]. Opt. Precision Eng., 2013, 21(7):1559-1665.(in Chinese)
SMEKAL L V, KACHELRIEβ M, STEPINA E, et al.. Geometric misalignment and calibration in cone-beam tomography[J]. Medical Physics, 2004,31(12):3242.
CHO Y, MOSELEY D J, SIEWERDSEN J H, et al.. Accurate technique for complete geometric calibration of cone-beam computed tomography systems[J]. Med Phys, 2005,32(4):968-983.
LI X, ZHANG D, LIU B. A generic geometric calibration method for tomographic imaging systems with flat-panel detectors—A detailed implementation guide [J]. Medical Physics, 2010,37(7):3844.
李雅倩, 林洪彬. 回转体形貌测量中的相机自标定[J]. 光学 精密工程, 2011,19(8):1957-1963. LI Y Q, LIN H B.Camera calibration in morphology measurement of axisymmetric body[J]. Opt. Precision Eng., 2011, 19(8):1957-1963.(in Chinese)
GROSS D, HEIL U, SCHULZE R, et al.. Auto calibration of a cone-beam-CT[J]. Medical Physics, 2012,39(10):5959.
KINGSTON A, SAKELLARIOU A, VARSLOT T, et al.. Reliable automatic alignment of tomographic projection data by passive auto-focus [J]. Medical Physics, 2011,38(9):4934.
YUANZHENG M, HUI G, XIAOQUAN Y. Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects[J]. IEEE Transactions on Medical Imaging, 2013,32(2):278-288.
SAWALL S, KNAUP M, KACHELRIEβ M. A robust geometry estimation method for spiral, sequential and circular cone-beam micro-CT[J]. Medical Physics, 2012,39(9):5384.
HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. Cambridge Univ. Press, 2000.
COLOMBO C, DEL B A, PERNICI F. Metric 3D reconstruction and texture acquisition of surfaces of revolution from a single uncalibrated view[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2005,27(1):99-114.
XU J, TSUI B M. A graphical method for determining the in-plane rotation angle in geometric calibration of circular cone-beam CT systems[J]. IEEE Trans. Med. Imaging, 2012,31(3):825-833.
FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21(5):476-480.
邹晓兵, 曾理. 锥束螺旋CT半覆盖扫描重建[J]. 光学 精密工程, 2010,18(2):434-442. ZOU X B, ZENG L. Half-cover scanning and reconstructing for helical cone-beam CT [J]. Opt. Precision Eng., 2010,18(2):434-442.(in Chinese)
0
浏览量
361
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构